通过fMRI时间过程和光谱的形状分析测量大脑连通性。

David S Lee, Amber Leaver, Katherine L Narr, Roger P Woods, Shantanu H Joshi
{"title":"通过fMRI时间过程和光谱的形状分析测量大脑连通性。","authors":"David S Lee,&nbsp;Amber Leaver,&nbsp;Katherine L Narr,&nbsp;Roger P Woods,&nbsp;Shantanu H Joshi","doi":"10.1007/978-3-319-67159-8_15","DOIUrl":null,"url":null,"abstract":"<p><p>We present a shape matching approach for functional magnetic resonance imaging (fMRI) time course and spectral alignment. We use ideas from differential geometry and functional data analysis to define a functional representation for fMRI signals. The space of fMRI functions is then equipped with a reparameterization invariant Riemannian metric that enables elastic alignment of both amplitude and phase of the fMRI time courses as well as their power spectral densities. Experimental results show significant increases in pairwise node to node correlations and coherences following alignment. We apply this method for finding group differences in connectivity between patients with major depression and healthy controls.</p>","PeriodicalId":92190,"journal":{"name":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","volume":"10511 ","pages":"125-133"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_15","citationCount":"2","resultStr":"{\"title\":\"Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.\",\"authors\":\"David S Lee,&nbsp;Amber Leaver,&nbsp;Katherine L Narr,&nbsp;Roger P Woods,&nbsp;Shantanu H Joshi\",\"doi\":\"10.1007/978-3-319-67159-8_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a shape matching approach for functional magnetic resonance imaging (fMRI) time course and spectral alignment. We use ideas from differential geometry and functional data analysis to define a functional representation for fMRI signals. The space of fMRI functions is then equipped with a reparameterization invariant Riemannian metric that enables elastic alignment of both amplitude and phase of the fMRI time courses as well as their power spectral densities. Experimental results show significant increases in pairwise node to node correlations and coherences following alignment. We apply this method for finding group differences in connectivity between patients with major depression and healthy controls.</p>\",\"PeriodicalId\":92190,\"journal\":{\"name\":\"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)\",\"volume\":\"10511 \",\"pages\":\"125-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-67159-8_15\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-67159-8_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connectomics in neuroimaging : First International Workshop, CNI 2017, held in conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, proceedings. CNI (Workshop) (1st : 2017 : Quebec, Quebec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-67159-8_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种用于功能磁共振成像(fMRI)时间过程和光谱对准的形状匹配方法。我们使用微分几何和函数数据分析的思想来定义fMRI信号的函数表示。然后,fMRI函数的空间配备了一个再参数化不变黎曼度量,使fMRI时间过程的振幅和相位以及它们的功率谱密度都能够弹性对齐。实验结果表明,对齐后两两节点间的相关性和相干性显著增加。我们应用这种方法来发现重度抑郁症患者和健康对照者之间连通性的组间差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.

Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.

Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.

Measuring Brain Connectivity via Shape Analysis of fMRI Time Courses and Spectra.

We present a shape matching approach for functional magnetic resonance imaging (fMRI) time course and spectral alignment. We use ideas from differential geometry and functional data analysis to define a functional representation for fMRI signals. The space of fMRI functions is then equipped with a reparameterization invariant Riemannian metric that enables elastic alignment of both amplitude and phase of the fMRI time courses as well as their power spectral densities. Experimental results show significant increases in pairwise node to node correlations and coherences following alignment. We apply this method for finding group differences in connectivity between patients with major depression and healthy controls.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信