{"title":"Correlation between rheological properties and maturity of passion fruit based on machine vision","authors":"Fan Lin , Dengjie Chen , Caihua Lu , Jincheng He","doi":"10.1016/j.biosystemseng.2024.12.008","DOIUrl":"10.1016/j.biosystemseng.2024.12.008","url":null,"abstract":"<div><div>Rheological properties play an important role in food production and quality control. This research explores the relationship between rheological parameters and quality characteristics of passion fruit and establishes a maturity classification model for passion fruit based on its rheological properties. Each sample undergoes a rheological test, texture profile test, puncture test, and physicochemical index test. These tests aim to gather precise mechanical and physiological information on passion fruit. We built a mechanical testing platform and used machine vision to analyse the micro-deformation of fruit. The platform can measure the real-time contact area and load value to obtain accurate stress values during compression. Non-destructive rheological tests were conducted on intact passion fruit to get the elastic modulus during the loading stage. It is highly consistent with the results of traditional Hertz contact theory. Additionally, the stress relaxation parameters were obtained by fitting the five elements Maxwell model during the holding stage. Notably, there are strong correlations between the rheological parameters and most texture parameters or physicochemical indicators, with the highest correlation coefficient reaching 0.703. Therefore, the rheological parameters were utilised as inputs for maturity classification models (GBDT, MLP, and AdaBoost). All models achieved satisfactory classification results. Particularly, the GBDT model demonstrated excellent classification performance and generalisation capability, with Precision, Recall, and F-Score of 80.44%, 80.08%, and 80.26%. The results show that it is feasible to determine the maturity of passion fruit based on non-destructive rheological characteristics.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 236-249"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143152588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a spectral repository for the identification of western Himalayan medicinal plants using machine learning techniques","authors":"Kishor Chandra Kandpal , Shubham Anchal , Anirudh Verma , Amit Kumar","doi":"10.1016/j.biosystemseng.2024.11.014","DOIUrl":"10.1016/j.biosystemseng.2024.11.014","url":null,"abstract":"<div><div>The identification of medicinal plant species is a crucial task for assessing the status of our bioresources. Conventional methods primarily rely on taxonomy and laboratory-based instruments, which are time-consuming and require the requisite expertise. Thus, there is an escalating demand for efficient techniques that can quickly identify these precious species. The advent of Hyperspectral Remote Sensing (HRS) with artificial intelligence has significantly increased the scope of HRS techniques by offering rapid and precise plant identification. This study utilised non-imaging HRS handheld sensors to build a spectral repository for 10 important medicinal plant species from diverse locations across Indian Himalayan states, representing varying altitudinal and ecological conditions. The spectral repository encompasses 1237 distinct spectral signatures obtained from the leaves and canopies of the targeted plant species. Subsequently, an identification model has been developed using Random Forest (RF) with several feature selection methods, and it has been revealed that the RF model, coupled with wrapper-based feature selection, is an effective combination for classifying the targeted plant species. The calibration and test datasets accounted for accuracies of 87.87% and 91.39%, respectively, with corresponding kappa coefficients of 0.85 and 0.89. Furthermore, the developed RF model was applied to ‘PRISMA’ satellite data to identify <em>Saussurea costus</em> crops in farmers' croplands, achieving a classification accuracy of 81.31% and a kappa coefficient of 0.76. Therefore, the study highlights the potential of integrating RF, <em>in-situ</em> HRS, and satellite HRS for the non-destructive, precise, and accurate identification of medicinal plants that can significantly contribute to biodiversity conservation and sustainable resource management.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"249 ","pages":"Pages 58-70"},"PeriodicalIF":4.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaomin Xu , Sifang Long , Zixian Su , Khawar Hayat , Lijuan Xie , Jinming Pan
{"title":"Egg characteristics assessment as an enabler for in-ovo sexing technology: A review","authors":"Shaomin Xu , Sifang Long , Zixian Su , Khawar Hayat , Lijuan Xie , Jinming Pan","doi":"10.1016/j.biosystemseng.2024.11.008","DOIUrl":"10.1016/j.biosystemseng.2024.11.008","url":null,"abstract":"<div><div>The culling of day-old male chicks remains a significant challenge for the egg-laying industry. While <em>in ovo</em> sexing technology has made strides, it has yet to achieve an optimal balance between early identification of sex at hatching, high sensitivity, and non-invasive operation. This paper aims to provide a comprehensive review of the research progress in <em>in ovo</em> sexing from various perspectives and to explore potential solutions in light of industrial practices and key technological bottlenecks. This study describes an efficient detection method for low-concentration samples and provides recommendations for the rapid detection of sex markers in chicken embryo allantoic fluid. Given the complexity of optical signals and the significant individual differences among eggs, the paper underscores the importance of evaluating egg characteristics in advancing <em>in ovo</em> sex determination technology. Based on this core concept, the use of multimodal data fusion strategies are advocated for <em>in ovo</em> sexing. This approach aims to deepen researchers' understanding of the complex relationship between sex labels and the high-dimensional data of breeding eggs, thereby injecting new momentum and direction into the development of this field.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"249 ","pages":"Pages 41-57"},"PeriodicalIF":4.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu Zhenji , Long Yangjuan , Li Junfeng , Liu Dongdong
{"title":"Analysis of three-dimensional cake thickness structure characteristics in a screen filter for drip irrigation based on the CFD‒DEM coupling method","authors":"Liu Zhenji , Long Yangjuan , Li Junfeng , Liu Dongdong","doi":"10.1016/j.biosystemseng.2024.11.017","DOIUrl":"10.1016/j.biosystemseng.2024.11.017","url":null,"abstract":"<div><div>The three-dimensional filter cake structure is the focus of screen filter research. In order to explore the variation trend of filter cake thickness and thickness homogeneity under different inlet flow rates and different particle concentrations, the clogged mesh filters were studied by prototype and the CFD-DEM coupling experiment. The results showed that, as particle concentration increased, clogged filter cake thickness increased at first and dropped subsequently during the prototype experiment, which was determined by the number of particles per unit of time touching the screen and the particles of the force of interaction. Likewise, with an increasing inlet flow rate, the clogging cake thickness showed a slow decline and then tended to be stable during the prototype experiment, which was determined by the number of particles per unit of time touching the screen and the force of the flow field on the particles. The prototype experiment and simulation experiment showed the consistency of this trend. It was discovered that with the increase flow rate, the filter cake grade first increased then decreased after reaching a critical flow rate (160 m<sup>3</sup> h<sup>−1</sup>), and with the increase particle concentration the filter cake grade increased and then stabilised after reaching the saturation concentration (0.279 kg m<sup>−</sup>³). The best operating parameters were identified for filter functioning in actual irrigation based on the filter cake grade, to reduce clogging and simplifying future flushing.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 1-14"},"PeriodicalIF":4.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sangik Lee , Jong-hyuk Lee , Byung-hun Seo , Dong-su Kim , Dongwoo Kim , Yerim Jo , Won Choi
{"title":"Stiffness evaluation of semi-rigid connection using steel clamps in plastic greenhouse structure","authors":"Sangik Lee , Jong-hyuk Lee , Byung-hun Seo , Dong-su Kim , Dongwoo Kim , Yerim Jo , Won Choi","doi":"10.1016/j.biosystemseng.2024.11.018","DOIUrl":"10.1016/j.biosystemseng.2024.11.018","url":null,"abstract":"<div><div>Greenhouse structures, essential for modern agriculture, often experience significant uncertainties due to varying environmental conditions, leading to frequent damage and economic losses. Accurately analysing the structural responses of these greenhouses is particularly challenging due to the difficulty in understanding the actual behaviour of connections using steel clamps. This study focuses on evaluating the stiffness and mechanical behaviour of semi-rigid connections using steel clamps in plastic greenhouses. A specialised load-deformation testing apparatus was developed to assess the relationships between force and displacement or moment and rotation for these connections with various deformation modes. The experimental results were used to model stiffness coefficients and ultimate limit loads, providing a detailed understanding of the mechanical properties of these connections. Findings reveal that steel clamps introduce complex structural behaviours that differ significantly from traditional connections, highlighting the need for advanced modelling techniques. This comprehensive analysis offers new insights into the behaviour of semi-rigid connections in greenhouse structures and underscores the importance of detailed empirical studies. The research contributes to improving the structural design and safety assessments of agricultural facilities, ensuring better resilience against environmental stresses. The outcomes are crucial for developing more effective and reliable greenhouse designs that can withstand adverse conditions, ultimately supporting sustainable agricultural practices.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"250 ","pages":"Pages 15-27"},"PeriodicalIF":4.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanjia Hua , Wenqiang Zhang , Zhao Zhang , Xiaohang Liu , Mengning Huang , C. Igathinathane , Stavros Vougioukas , Chayan Kumer Saha , N.S. Mustafa , Dina Saber Salama , Yao Zhang , Man Zhang
{"title":"Vacuum suction end-effector development for robotic harvesters of fresh market apples","authors":"Wanjia Hua , Wenqiang Zhang , Zhao Zhang , Xiaohang Liu , Mengning Huang , C. Igathinathane , Stavros Vougioukas , Chayan Kumer Saha , N.S. Mustafa , Dina Saber Salama , Yao Zhang , Man Zhang","doi":"10.1016/j.biosystemseng.2024.11.011","DOIUrl":"10.1016/j.biosystemseng.2024.11.011","url":null,"abstract":"<div><div>Timely harvesting of fresh apples faces challenges due to labour shortage, and the modern approach of robotic harvesting has the potential to address this issue. The prevailing process of apple harvest robotics could not meet the demands of practical applications, mainly due to the lack of a suitable manipulator, because the existing ones are associated with low picking rates, fruit damage, and high costs. A prototype apple harvesting manipulator was developed, which includes a vacuum three-revolute-degrees-of-freedom end-effector, a three-prismatic-degrees-of-freedom Cartesian system, an RGB-D camera, and system integration. The vision positioning system and controller were designed to realise precise positioning and detachment of the manipulator. The major contribution of the current study is the three-revolute-degrees-of-freedom vacuum suction end-effector, whose performance evaluation was conducted in a commercial apple orchard. Experimental results showed that a 33<em>ϕ</em> mm diameter suction cup achieved superior performance over a 43<em>ϕ</em> mm cup. The method of rotation followed by pull proved to be more effective than only pulling for apple detachment. The results indicated that the apple’s equatorial region was the optimal area for suction. Furthermore, the vacuum pressure should be at least −65 kPa to guarantee successful detachment. Experimental results showed that 83.1% of harvested apples had stems intact. For the developed manipulator, a 33<em>ϕ</em> mm diameter suction cup, a rotate-and-pull separation method, and −65 kPa were recommended for practical applications. With the integrated new manipulator, the developed apple harvest robot has been demonstrated to have the potential to realise robotic apple harvesting.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"249 ","pages":"Pages 28-40"},"PeriodicalIF":4.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manon Dat , Hervé Plaisance , Jane Vignau-Laulhere , Sylvain Bourrigaud , Valérie Desauziers
{"title":"Modelling of pheromone release from solid matrix dispenser for integrated pest management","authors":"Manon Dat , Hervé Plaisance , Jane Vignau-Laulhere , Sylvain Bourrigaud , Valérie Desauziers","doi":"10.1016/j.biosystemseng.2024.11.013","DOIUrl":"10.1016/j.biosystemseng.2024.11.013","url":null,"abstract":"<div><div>Sex pheromones are introduced in the cultivated areas to create mating disruption and thus to protect crops from pests. This article deals with the release characteristics of a model pheromone (dodecyl acetate) encapsulated in a solid matrix developed as a passive dispenser. Released kinetics were obtained both in the field by extracting and quantifying the remaining pheromone in the dispenser over time and in laboratory by emission chamber tests under controlled conditions. Results showed that the release profiles follow pseudo-zero-order kinetics with a quasi-constant release rate of 1.53 mg day<sup>-1</sup> under field conditions for the first sixty days. Emission data showed that two key parameters, i.e., the matrix/air partition coefficient (K<sub>ma</sub>) and the convective transfer coefficient in the gas phase (h<sub>m</sub>) govern the release rate of the dispenser. Estimates of K<sub>ma</sub> varied from 1×10<sup>6</sup> to 4.55×10<sup>6</sup> and h<sub>m</sub> from 3.2×10<sup>-3</sup> to 5×10<sup>-3</sup> m s<sup>-1</sup> depending on the air velocity and temperature conditions. Temperature dependence of K<sub>ma</sub> was most significant and was addressed by estimating the enthalpy of the pheromone partitioning between the matrix dispenser and air <span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mtext>ma</mtext></msub></mrow></math></span> (102 kJ mol<sup>-1</sup>). The results led to the development of a model based on K<sub>ma</sub> and h<sub>m</sub> as the main parameters describing pheromone release from the matrix dispenser. A good agreement was found between the measurements obtained in field and model predictions. This model could be an effective tool for adjusting the release rate of pheromone dispensers under practise conditions.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"249 ","pages":"Pages 18-27"},"PeriodicalIF":4.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaochuan Zhao , Janguo Zhao , Jiale Zhao , Zhikai Ma , Jianchang Li , Binhao Dai , Meilin An , Jiaping Wang , Jianjun Hao
{"title":"Optimisation design and experimental analysis of rotary blade reinforcing ribs using DEM-FEM techniques","authors":"Xiaochuan Zhao , Janguo Zhao , Jiale Zhao , Zhikai Ma , Jianchang Li , Binhao Dai , Meilin An , Jiaping Wang , Jianjun Hao","doi":"10.1016/j.biosystemseng.2024.11.015","DOIUrl":"10.1016/j.biosystemseng.2024.11.015","url":null,"abstract":"<div><div>This study addresses the prevalent issue of rotary blade fractures in tillage operations by designing a new type of reinforcing rib that mitigates neck force and alleviates stress concentration. Initially, utilising traditional design concepts, the side-plate reinforcing rib was segmented into units and analysed using ANSYS to develop an initial model. Evaluation indices such as specific strength structural efficiency and specific stiffness structural efficiency were employed to perform orthogonal optimisation of the rib dimensions, achieving optimal measurements of 72.9 mm in length, 15.7 mm in width, and 3.5 mm in thickness. These dimensions enhance the specific strength structural efficiency by 14.14% and the specific stiffness structural efficiency by 0.95% compared to the initial model. Further, the rib's mathematical model was refined and generalised by a curve-fitting method across different rotary blade models (IT series), followed by topological optimisation to fine-tune morphological features. This optimisation reduced the model's mass by 9.78% and improved efficiency metrics by 2.6% (strength) and 0.5% (stiffness). Comparative experiments using DEM-FEM coupled analysis were conducted on three optimised models to assess the redesigned blade's performance. The experiments evaluated key performance metrics such as neck force, maximum stress, fatigue life, and ultimate fracture stress. The results indicate that after two rounds of optimisation, the blade's neck force was reduced by 16.85%, the maximum stress decreased by 15.22%, the fatigue life increased by 76.03%, and the ultimate fracture stress improved by 20.16%. These changes align with the optimisation objectives. Subsequent control and calibration tests produced a load-strain curve that validated the simulation data with a marginal error range of 3%–10%, validating the simulation's accuracy. This research provides a robust theoretical framework for optimising the reinforcing rib and fracture resistance of rotary blades.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"249 ","pages":"Pages 1-17"},"PeriodicalIF":4.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142721538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyue Zhang , Qingjie Wang , Chao Wang , Xiuhong Wang , Zhengxin Xu , Caiyun Lu
{"title":"Guidelines for mechanical weeding: Developing weed control lines through point extraction at maize root zones","authors":"Xinyue Zhang , Qingjie Wang , Chao Wang , Xiuhong Wang , Zhengxin Xu , Caiyun Lu","doi":"10.1016/j.biosystemseng.2024.11.003","DOIUrl":"10.1016/j.biosystemseng.2024.11.003","url":null,"abstract":"<div><div>Precision agriculture advancements are epitomised by precision mechanical weeding, which contributes significantly to sustainable farming practices. Traditional leaf-recognition technologies fail to meet the stringent requirements of precision weeding because they do not adequately guide weeding tools that operate close to seedling roots, such as finger weeders, to minimise crop damage. To address this issue, a novel method is developed to delineate paths for weeding tools, thereby preventing harm to seedlings. This method employs an advanced version of YOLOv8Pose to detect weeding areas around maize seedlings by pinpointing key points on the maize seedlings. To enhance the detection accuracy, a multi-scale dilation attention (MSDA) module and a lightweight reparameterisable EfficientRep module were used. The root connection line of the maize row was obtained by sequentially connecting the key point positions. The guide line for the weeding component was then determined by correcting this root connection line using the median absolute deviation (MAD) as the threshold. The approach demonstrated a remarkable precision in guiding weeding lines with an angular error of only 0–3° and a recognition rate of 100 FPS. In actual weeding operations, the effective weeding rate was 95.6%, which was far better than the 74.2% obtained by the leaf recognition-based method. This innovative method not only enhances weeding precision but also significantly reduces crop damage risk, thereby fostering more effective and sustainable agricultural practices.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"248 ","pages":"Pages 321-336"},"PeriodicalIF":4.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}