Yuchen Yang, Neil C Dalvie, Joseph R Brady, Christopher A Naranjo, Timothy Lorgeree, Sergio A Rodriguez-Aponte, Ryan S Johnston, Mary K Tracey, Carmen M Elenberger, Eric Lee, Mark Tié, Kerry R Love, J Christopher Love
{"title":"Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii.","authors":"Yuchen Yang, Neil C Dalvie, Joseph R Brady, Christopher A Naranjo, Timothy Lorgeree, Sergio A Rodriguez-Aponte, Ryan S Johnston, Mary K Tracey, Carmen M Elenberger, Eric Lee, Mark Tié, Kerry R Love, J Christopher Love","doi":"10.1002/bit.28878","DOIUrl":"10.1002/bit.28878","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K. phaffii, however, may manifest unique molecular quality attributes, like host-dependent, product-related variants, that could raise potential concerns for clinical use. We demonstrate here conservative modifications to the amino acid sequence of aglycosylated antibodies based on the human IgG1 isotype that minimize product-related variations when secreted by K. phaffii. A combination of 2-3 changes of amino acids reduced variations across six different aglycosylated versions of commercial mAbs. Expression of a modified sequence of NIST mAb in both K. phaffii and CHO cells showed comparable biophysical properties and molecular variations. These results suggest a path toward the production of high-quality mAbs that could be expressed interchangeably by either yeast or mammalian cells. Improving molecular designs of proteins to enable a range of manufacturing strategies for well-characterized biopharmaceuticals could accelerate global accessibility and innovations.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximilian Klimpel, Beatrice Pflüger-Müller, Marta Arrizabalaga Cascallana, Sarah Schwingal, Nikki Indresh Lal, Thomas Noll, Vicky Pirzas, Holger Laux
{"title":"Perfusion Process Intensification for Lentivirus Production Using a Novel Scale-Down Model","authors":"Maximilian Klimpel, Beatrice Pflüger-Müller, Marta Arrizabalaga Cascallana, Sarah Schwingal, Nikki Indresh Lal, Thomas Noll, Vicky Pirzas, Holger Laux","doi":"10.1002/bit.28880","DOIUrl":"https://doi.org/10.1002/bit.28880","url":null,"abstract":"Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small-scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4-fold higher cell-specific functional virus yield and 2.8-fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set-up, resulting in a 1.4-fold higher cell-specific functional virus yield and 3.1-fold higher volumetric virus yield.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"39 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biotechnology and Bioengineering: Volume 121, Number 12, December 2024","authors":"","doi":"10.1002/bit.28887","DOIUrl":"10.1002/bit.28887","url":null,"abstract":"","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3651-3654"},"PeriodicalIF":3.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28887","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to “A High‐Throughput Expression and Screening Platform for Applications‐Driven PETase Engineering”","authors":"","doi":"10.1002/bit.28882","DOIUrl":"https://doi.org/10.1002/bit.28882","url":null,"abstract":"","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"24 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathalia Lobato Moraes, Mailson Batista de Vilhena, Daniele Misturini Rossi, Bruno Marques Viegas
{"title":"Mathematical Modeling and Simulation of 1,3‐Propanediol Production by Klebsiella pneumoniae BLh‐1 in a Batch Bioreactor Using Bayesian Statistics","authors":"Nathalia Lobato Moraes, Mailson Batista de Vilhena, Daniele Misturini Rossi, Bruno Marques Viegas","doi":"10.1002/bit.28883","DOIUrl":"https://doi.org/10.1002/bit.28883","url":null,"abstract":"Mathematical modeling and computer simulation are fundamental for optimizing biotechnological processes, enabling cost reduction and scalability, thereby driving advancements in the bioindustry. In this work, mathematical modeling and estimation of fermentative kinetic parameters were carried out to produce 1,3‐propanediol (1,3‐PDO) from residual glycerol and <jats:italic>Klebsiella pneumoniae</jats:italic> BLh‐1. The Markov chain Monte Carlo method, using the Metropolis‐Hastings algorithm, was applied to experimental data from a batch bioreactor under aerobic and anaerobic conditions. Sensitivity analysis and parameter evolution studies were conducted. The root‐mean‐square error (rRMSE) was chosen as the validation and calibration metric for the developed mathematical model. The results indicated that the average tolerance of glycerol was 174.68 and 44.85 g L<jats:sup>−1</jats:sup>, the inhibitory products was 150.95 g L<jats:sup>−1</jats:sup> for ethanol and 35.56 g L<jats:sup>−1</jats:sup> for 1,3‐PDO, and the maximum specific rate of cell growth was 0.189 and 0.275 h<jats:sup>−1</jats:sup>, for aerobic and anaerobic cultures, respectively. The model presented excellent fits in both crops, with rRMSE values between 0.09 − 33.74% and 3.58 − 31.82%, for the aerobic and anaerobic environment, respectively. With this, it was possible to evaluate and extract relevant information for a better understanding and control of the bioprocess.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"9 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apurva Godbole, Lyufei Chen, Jay Desai, Smita Raghava, Richard Ruzanski, Bhumit Patel, Emmanuel Appiah‐Amponsah, Hanzhou Feng
{"title":"Implemention of Innovative Process Analytical Technologies to Characterize Critical Quality Attributes of Co‐Formulated Monoclonal Antibody Products","authors":"Apurva Godbole, Lyufei Chen, Jay Desai, Smita Raghava, Richard Ruzanski, Bhumit Patel, Emmanuel Appiah‐Amponsah, Hanzhou Feng","doi":"10.1002/bit.28881","DOIUrl":"https://doi.org/10.1002/bit.28881","url":null,"abstract":"Characterizing co‐formulated monoclonal antibodies (mAbs) poses significant challenges in the pharmaceutical industry. Due to the high structural similarity of the mAbs, traditional analytical methods, compounded by the lengthy method development process, hinder product development and manufacturing efficiency. There is increasing critical need in the pharmaceutical industry to streamline analytical approaches, minimizing time and resources, ensuring a rapid clinical entry and cost‐effective manufacturing. This study investigates the application of process analytical technologies (PAT) to address such challenges. Our investigation introduces two complementary technologies, on‐line ultra‐performance liquid chromatography (online UPLC) and multimode fluorescence spectroscopy (MMFS), as potential PAT tools tailored for characterizing critical quality attributes (CQA) in co‐formulated mAb products. Specifically, the CQAs under evaluation include the total protein concentration of the mAbs within the co‐formulation and the ratio of mAb A to mAb B. Online UPLC enables direct and automated measurement of the CQAs through physical separation, while MMFS determines them in a non‐destructive and more swift manner based on chemometric modeling. We demonstrate these technologies' comparable performance to conventional methods, alongside substantial benefits such as reduced analytical turnaround time and decreased laboratory efforts. Ultimately, integrating them as innovative PAT tools expedites the delivery of therapeutic solutions to patients and enhances manufacturing efficiency, aligning with the imperative for swift translation of scientific discoveries into clinical benefits.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"245 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic Engineering of Nonmodel Yeast Issatchenkia orientalis SD108 for 5-Aminolevulinic Acid Production.","authors":"Shih-I Tan, I-Son Ng, Huimin Zhao","doi":"10.1002/bit.28877","DOIUrl":"10.1002/bit.28877","url":null,"abstract":"<p><p>Biological production of 5-aminolevulinic acid (5-ALA) has received growing attention over the years. However, there is the tradeoff between 5-ALA biosynthesis and cell growth because the fermentation broth will become acidic due to the production of 5-ALA. To address this limitation, we engineered an acid-tolerant yeast, Issatchenkia orientalis SD108, for 5-ALA production. We first discovered that the cell growth rate of I. orientalis SD108 was boosted by 5-ALA and its endogenous ALA synthetase (ALAS) showed higher activity than those homologs from other yeasts. The titer of 5-ALA was improved from 28 mg/L to 120-, 150-, and 300 mg/L, by optimizing plasmid design, overexpressing a transporter, and increasing gene copy number, respectively. After redirecting the metabolic flux using the pyruvate decarboxylase (PDC) knockout strain (SD108ΔPDC) and culturing with urea, we increased the titer of 5-ALA to 510 mg/L, a 13-fold enhancement, proving the importance of the newly identified IoALAS with higher activity and the strategic selection of nitrogen sources for knockout strains. This study demonstrates the acid-tolerant I. orientalis SD108ΔPDC has a high potential for 5-ALA production at a large scale in the future.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Deffur, Anna Dinius, Julian Pagel, Henri Müller, Stefan Schmideder, Heiko Briesen, Rainer Krull
{"title":"Oxygen Consumption in Filamentous Pellets of Aspergillus niger: Microelectrode Measurements and Modeling.","authors":"Charlotte Deffur, Anna Dinius, Julian Pagel, Henri Müller, Stefan Schmideder, Heiko Briesen, Rainer Krull","doi":"10.1002/bit.28874","DOIUrl":"https://doi.org/10.1002/bit.28874","url":null,"abstract":"<p><p>Filamentous fungi cultivated as biopellets are well established in biotechnology industries. A distinctive feature of filamentous fungi is that hyphal growth and fungal morphology affect product titers and require tailored process conditions. Within the pellet, mass transfer, substrate consumption, and biomass formation are intricately linked to the local hyphal fraction and pellet size. This study combined oxygen concentration measurements with microelectrode profiling and three-dimensional X-ray microtomography measurements of the same fungal pellets for the first time. This allowed for the precise correlation of micromorphological information with local oxygen concentrations of two Aspergillus niger strains (hyperbranching and regular branching). The generated results showed that the identified oxygen-penetrated outer pellet regions exhibited a depth of 90-290 µm, strain-specific, with the active part percentage in the pellet ranging from 18% to 69%, without any difference between strains. Using a 1D continuum diffusion consumption model, the oxygen concentration in the pellets was computed depending on the local hyphal fraction. The best simulation results were achieved by individually estimating the oxygen-related biomass yield coefficient of the consumption term within each examined pellet, with an average estimated value of 1.95 (± 0.72) kg biomass per kg oxygen. The study lays the foundation for understanding oxygen supply in fungal pellets and optimizing processes and pellet morphologies accordingly.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Urea-Loaded PLGA Microspheres as Chemotaxis Stimulants for Helicobacter pylori.","authors":"Prasanth Shanmughan, Pravin Subrahmaniyan, Dhruv Bhatnagar, Srinithi Ranganathan, Pushkar P Lele","doi":"10.1002/bit.28870","DOIUrl":"https://doi.org/10.1002/bit.28870","url":null,"abstract":"<p><p>Helicobacter pylori cells undergo chemotaxis toward several small molecules, called chemo-attractants, including urea produced by the epithelial cells of the stomach. The biophysical mechanisms of chemotaxis are not well understood in H. pylori. Here, we developed point sources of urea by encapsulating it in Poly(lactic-co-glycolic acid) or PLGA microbeads for H. pylori chemotaxis studies. Microscopy and Dynamic Light Scattering characterization indicated that the PLGA particles had an average diameter of < 0.8 μm. The particles were relatively stable and had a net negative surface charge. Absorbance measurements indicated that the beads released ~70% of the urea over a 2-week period, with most of the release occurring within the first 24-h period. Varying pH (2.0-7.0) had little effect on the rate of urea release. A diffusion model predicted that such beads could generate sufficient urea gradients to chemotactically attract H. pylori cells. Single-bead single-cell chemotaxis assays confirmed the predictions, revealing that H. pylori continued to be attracted to beads even after most of the urea had been released in the first 24 h. Our work highlights a novel use of PLGA microbeads as delivery vehicles for stimulating a chemotaxis response in H. pylori, with potential applications in bacterial eradication strategies.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Ma, Chong Xie, Yu Zhang, Wenna Li, Ning An, Xiaolin Shen, Jia Wang, Xinxiao Sun, Qipeng Yuan
{"title":"Design an Energy-Conserving Pathway for Efficient Biosynthesis of 1,5-Pentanediol and 5-Amino-1-Pentanol.","authors":"Lin Ma, Chong Xie, Yu Zhang, Wenna Li, Ning An, Xiaolin Shen, Jia Wang, Xinxiao Sun, Qipeng Yuan","doi":"10.1002/bit.28875","DOIUrl":"https://doi.org/10.1002/bit.28875","url":null,"abstract":"<p><p>1,5-Pentanediol (1,5-PDO) is an important five-carbon alcohol, widely used in polymer and pharmaceutical industries. Considering the substantial energy (ATP and NADPH) requirements of previous pathways, an energy-conserving artificial pathway with a higher theoretical yield (0.75 mol/mol glucose) was designed and constructed in this study. In this pathway, lysine is converted into 1,5-PDO by decarboxylation, two transamination, and two reduction reactions. For the purpose of full pathway construction, 5-aminopetanal reductase and 5-amino-1-pentanol (5-APO) transaminase were identified and characterized. By implementing strategies such as modular optimization of gene expression, enhancing lysine biosynthesis and increasing NADPH supply, the engineered strains were able to produce 1502.8 mg/L 5-APO and 726.2 mg/L 1,5-PDO in shake flasks and 11.7 g/L 1,5-PDO in a 3 L bioreactor. This work provides a new and promising pathway for the efficient production of 5-APO and 1,5-PDO.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}