Biology Direct最新文献

筛选
英文 中文
Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens. 自组装两亲多肽 β 纳米纤维 KF-5 对阴道病原体的多重抗菌活性。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-22 DOI: 10.1186/s13062-024-00546-2
Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao
{"title":"Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens.","authors":"Ling Fang, Tiancheng Yang, Haojue Wang, Jun Cao","doi":"10.1186/s13062-024-00546-2","DOIUrl":"https://doi.org/10.1186/s13062-024-00546-2","url":null,"abstract":"<p><strong>Background: </strong>Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action.</p><p><strong>Results: </strong>The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01).</p><p><strong>Conclusions: </strong>KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"96"},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis. 由 HNF4A 激活的 miRNA 宿主基因 MIR194-2HG 通过调节 microRNA 的生物发生抑制胃癌。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-18 DOI: 10.1186/s13062-024-00549-z
Hong Cao, Zidi Wang, Qiwei Guo, Shanshan Qin, Dandan Li
{"title":"MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis.","authors":"Hong Cao, Zidi Wang, Qiwei Guo, Shanshan Qin, Dandan Li","doi":"10.1186/s13062-024-00549-z","DOIUrl":"https://doi.org/10.1186/s13062-024-00549-z","url":null,"abstract":"<p><strong>Background: </strong>MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood.</p><p><strong>Methods: </strong>Loss-of-function studies were performed in vivo and in vitro to reveal the biological function of MIR194-2HG in GC. MicroRNA PCR array, northern blotting, RNA sequencing, chromatin immunoprecipitation, and rescue assays were conducted to uncover the molecular mechanism of MIR194-2HG.</p><p><strong>Results: </strong>In this study, we reported an atypical lncRNA function of MIR194-2HG in GC. MIR194-2HG downregulation was clinically associated with malignant progression and poor prognosis in GC. Functional assays confirmed that MIR194-2HG knockdown significantly promoted GC proliferation and metastasis in vitro and in vivo. Mechanismically, MIR194-2HG was required for the biogenesis of miR-194 and miR-192, which were reported to be tumor-suppressor genes in GC. Moreover, hepatocyte nuclear factor HNF4A directly activated the transcription of MIR194-2HG and its derived miR-194 and miR-192. Meanwhile, BTF3L4 was proved to be a common target gene of miR-192 and miR-194. Rescue assay further confirmed that MIR194-2HG knockdown promotes GC progression through maintaining BTF3L4 overexpression in a miR-194/192-dependent manner.</p><p><strong>Conclusion: </strong>The dysregulated MIR194-2HG/BTF3L4 axis is responsible for GC progression. Targeting HNF4A to inhibit miR-192/194 expression may be a promising strategy for overcoming GC.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"95"},"PeriodicalIF":5.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway. ADAMTS4 通过调节 c-Myc 蛋白的稳定性和激活 MAPK 信号通路加剧肺癌的进展。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-16 DOI: 10.1186/s13062-024-00512-y
Wei Zhai, Wensheng Yang, Jing Ge, Xuelian Xiao, Kang Wu, Kelin She, Yu Zhou, Yi Kong, Lin Wu, Shiya Luo, Xingxiang Pu
{"title":"ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway.","authors":"Wei Zhai, Wensheng Yang, Jing Ge, Xuelian Xiao, Kang Wu, Kelin She, Yu Zhou, Yi Kong, Lin Wu, Shiya Luo, Xingxiang Pu","doi":"10.1186/s13062-024-00512-y","DOIUrl":"10.1186/s13062-024-00512-y","url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear.</p><p><strong>Methods: </strong>ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays.</p><p><strong>Results: </strong>Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway.</p><p><strong>Conclusions: </strong>We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"94"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19. 对称苯并咪唑孪生药物 TL1228 的特性:作为病毒进入抑制剂对抗 COVID-19 的作用。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-16 DOI: 10.1186/s13062-024-00523-9
Michela Murdocca, Osvaldo Andrade Santos-Filho, Claudia De Masi, Edivaldo Dos Santos Rodrigues, Claudia Valeria Campos de Souza, Riccardo De Santis, Donatella Amatore, Andrea Latini, Rossella Schipani, Lino di Rienzo Businco, Bruno Brandimarte, Giorgia Grilli, Tien L Huang, Annie S Mayence, Florigio Lista, Andrea Duranti, Federica Sangiuolo, Jean Jacques Vanden Eynde, Giuseppe Novelli
{"title":"Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19.","authors":"Michela Murdocca, Osvaldo Andrade Santos-Filho, Claudia De Masi, Edivaldo Dos Santos Rodrigues, Claudia Valeria Campos de Souza, Riccardo De Santis, Donatella Amatore, Andrea Latini, Rossella Schipani, Lino di Rienzo Businco, Bruno Brandimarte, Giorgia Grilli, Tien L Huang, Annie S Mayence, Florigio Lista, Andrea Duranti, Federica Sangiuolo, Jean Jacques Vanden Eynde, Giuseppe Novelli","doi":"10.1186/s13062-024-00523-9","DOIUrl":"https://doi.org/10.1186/s13062-024-00523-9","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reliably one of the largest pandemics the world has suffered in recent years. In the search for non-biological antivirals, special emphasis was placed on drug repurposing to accelerate the clinical implementation of effective drugs.The life cycle of the virus has been extensively investigated and many human targets have been identified, such as the molecular chaperone GRP78, representing a host auxiliary factor for SARS-CoV-2 entry. Here we report the inhibitor capacity of TL1228, a small molecule discovered through an in silico screening approach, which could interfere with the interaction of SARS-CoV-2 and its target cells, blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. TL1228 showed in vitro the ability to reduce significantly both pseudoviral and authentic viral activity even through the reduction of GRP78/ACE2 transcript levels. Importantly, TL1228 acts in modulating expression levels of innate immunity and as inflammation markers.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"93"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1. METTL3通过YTHDC1介导lncRNA CRNDE的m6A修饰,促进ATG10的表达,改善脑缺血再灌注损伤。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-16 DOI: 10.1186/s13062-024-00536-4
Zhengtao Yu, Ying Xia, Jiameng Li, Junwen Jiang, You Li, Youjun Li, Liu Wang
{"title":"METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1.","authors":"Zhengtao Yu, Ying Xia, Jiameng Li, Junwen Jiang, You Li, Youjun Li, Liu Wang","doi":"10.1186/s13062-024-00536-4","DOIUrl":"https://doi.org/10.1186/s13062-024-00536-4","url":null,"abstract":"<p><strong>Background: </strong>Ischemia/reperfusion (I/R) injury is a severe brain disorder with currently limited effective treatments. This study aims to explore the role of N6-methyladenosine (m6A) modification and associated regulatory factors in I/R to identify potential therapeutic targets.</p><p><strong>Methods: </strong>We utilized a middle cerebral artery occlusion (MCAO) rat model and SH-SY5Y cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to assess m6A levels and investigate the impact of METTL3 overexpression on long non-coding RNA (lncRNA) CRNDE expression. The effects of silencing lncRNA CRNDE on the interaction between YTHDC1 and ATG10 mRNA, as well as the stability of ATG10 mRNA, were evaluated. Additionally, apoptosis rates, pro-inflammatory and anti-inflammatory factor levels, ATG10 expression, and autophagic activity were analyzed to determine the effects of METTL3. The reverse effects of YTHDC1 overexpression were also examined.</p><p><strong>Results: </strong>MCAO rats and OGD/R-treated SH-SY5Y cells exhibited reduced m6A levels. METTL3 overexpression significantly inhibited lncRNA CRNDE expression. Silencing lncRNA CRNDE mitigated OGD/R-induced apoptosis and inflammation in SH-SY5Y cells, while enhancing autophagy and stabilizing ATG10 mRNA. METTL3 overexpression decreased cell apoptosis, reduced the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and increased IL-10 secretion. Furthermore, METTL3 overexpression upregulated ATG10 expression and promoted autophagy. Conversely, lncRNA CRNDE overexpression negated these effects.</p><p><strong>Conclusion: </strong>The inhibition of lncRNA CRNDE affects the interaction between YTHDC1 and ATG10 mRNA and stabilizes ATG10 mRNA, mediated by METTL3 overexpression. These findings suggest that targeting lncRNA CRNDE to reduce apoptosis, inhibit inflammation, increase ATG10 expression, and enhance autophagy could offer new therapeutic strategies for I/R injury.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"92"},"PeriodicalIF":5.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical characterization of the feedforward loop between CDK1 and FOXM1 in epidermal stem cells. 表皮干细胞中 CDK1 和 FOXM1 之间前馈回路的生化特征。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-13 DOI: 10.1186/s13062-024-00540-8
Maria Pia Polito, Alessio Romaldini, Lorenzo Tagliazucchi, Grazia Marini, Federica Radice, Gaia Andrea Gozza, Giulia Bergamini, Maria Paola Costi, Elena Enzo
{"title":"Biochemical characterization of the feedforward loop between CDK1 and FOXM1 in epidermal stem cells.","authors":"Maria Pia Polito, Alessio Romaldini, Lorenzo Tagliazucchi, Grazia Marini, Federica Radice, Gaia Andrea Gozza, Giulia Bergamini, Maria Paola Costi, Elena Enzo","doi":"10.1186/s13062-024-00540-8","DOIUrl":"https://doi.org/10.1186/s13062-024-00540-8","url":null,"abstract":"<p><p>The complex network governing self-renewal in epidermal stem cells (EPSCs) is only partially defined. FOXM1 is one of the main players in this network, but the upstream signals regulating its activity remain to be elucidated. In this study, we identify cyclin-dependent kinase 1 (CDK1) as the principal kinase controlling FOXM1 activity in human primary keratinocytes. Mass spectrometry identified CDK1 as a key hub in a stem cell-associated protein network, showing its upregulation and interaction with essential self renewal-related markers. CDK1 phosphorylates FOXM1 at specific residues, stabilizing the protein and enhancing its nuclear localization and transcriptional activity, promoting self-renewal. Additionally, FOXM1 binds to the CDK1 promoter, inducing its expression.We identify the CDK1-FOXM1 feedforward loop as a critical axis sustaining EPSCs during in vitro cultivation. Understanding the upstream regulators of FOXM1 activity offers new insights into the biochemical mechanisms underlying self-renewal and differentiation in human primary keratinocytes.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"91"},"PeriodicalIF":5.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-210 is essential to retinal homeostasis in fruit flies and mice. miR-210 对果蝇和小鼠的视网膜稳态至关重要
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-11 DOI: 10.1186/s13062-024-00542-6
Davide Colaianni, Federico Virga, Annamaria Tisi, Chiara Stefanelli, Germana Zaccagnini, Paola Cusumano, Gabriele Sales, Mihai Bogdan Preda, Fabio Martelli, Daniela Taverna, Massimiliano Mazzone, Cristiano Bertolucci, Rita Maccarone, Cristiano De Pittà
{"title":"miR-210 is essential to retinal homeostasis in fruit flies and mice.","authors":"Davide Colaianni, Federico Virga, Annamaria Tisi, Chiara Stefanelli, Germana Zaccagnini, Paola Cusumano, Gabriele Sales, Mihai Bogdan Preda, Fabio Martelli, Daniela Taverna, Massimiliano Mazzone, Cristiano Bertolucci, Rita Maccarone, Cristiano De Pittà","doi":"10.1186/s13062-024-00542-6","DOIUrl":"10.1186/s13062-024-00542-6","url":null,"abstract":"<p><strong>Background: </strong>miR-210 is one of the most evolutionarily conserved microRNAs. It is known to be involved in several physiological and pathological processes, including response to hypoxia, angiogenesis, cardiovascular diseases and cancer. Recently, new roles of this microRNA are emerging in the context of eye and visual system homeostasis. Recent studies in Drosophila melanogaster unveiled that the absence of miR-210 leads to a progressive retinal degeneration characterized by the accumulation of lipid droplets and disruptions in lipid metabolism. However, the possible conservation of miR-210 knock-out effect in the mammalian retina has yet to be explored.</p><p><strong>Results: </strong>We further investigated lipid anabolism and catabolism in miR-210 knock-out (KO) flies, uncovering significant alterations in gene expression within these pathways. Additionally, we characterized the retinal morphology of flies overexpressing (OE) miR-210, which was not affected by the increased levels of the microRNA. For the first time, we also characterized the retinal morphology of miR-210 KO and OE mice. Similar to flies, miR-210 OE did not affect retinal homeostasis, whereas miR-210 KO mice exhibited photoreceptor degeneration. To explore other potential parallels between miR-210 KO models in flies and mice, we examined lipid metabolism, circadian behaviour, and retinal transcriptome in mice, but found no similarities. Specifically, RNA-seq confirmed the lack of involvement of lipid metabolism in the mice's pathological phenotype, revealing that the differentially expressed genes were predominantly associated with chloride channel activity and extracellular matrix homeostasis. Simultaneously, transcriptome analysis of miR-210 KO fly brains indicated that the observed alterations extend beyond the eye and may be linked to neuronal deficiencies in signal detection and transduction.</p><p><strong>Conclusions: </strong>We provide the first morphological characterization of the retina of miR-210 KO and OE mice, investigating the role of this microRNA in mammalian retinal physiology and exploring potential parallels with phenotypes observed in fly models. Although the lack of similarities in lipid metabolism, circadian behaviour, and retinal transcriptome in mice suggests divergent mechanisms of retinal degeneration between the two species, transcriptome analysis of miR-210 KO fly brains indicates the potential existence of a shared upstream mechanism contributing to retinal degeneration in both flies and mammals.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"90"},"PeriodicalIF":5.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the role of SAMHD1 in endometrial cancer progression. 破解 SAMHD1 在子宫内膜癌进展中的作用。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-11 DOI: 10.1186/s13062-024-00525-7
Ping Qiang, Ying Chen, Yang Shao, Qicheng Deng, Songyuan Xu, Weipei Zhu
{"title":"Deciphering the role of SAMHD1 in endometrial cancer progression.","authors":"Ping Qiang, Ying Chen, Yang Shao, Qicheng Deng, Songyuan Xu, Weipei Zhu","doi":"10.1186/s13062-024-00525-7","DOIUrl":"10.1186/s13062-024-00525-7","url":null,"abstract":"<p><strong>Background: </strong>Endometrial cancer (EC) presents significant clinical challenges due to its heterogeneity and complex pathophysiology. SAMHD1, known for its role as a deoxynucleotide triphosphate triphosphohydrolase, has been implicated in the progression of various cancers, including EC. This study focuses on elucidating the role of SAMHD1 in EC through its impact on TRIM27-mediated PTEN ubiquitination.</p><p><strong>Results: </strong>Utilizing a combination of bioinformatics and cellular biology techniques, we investigated the interactions among SAMHD1, TRIM27, and PTEN. Our findings reveal that SAMHD1 modulates PTEN ubiquitination via TRIM27, impacting key pathways involved in EC pathogenesis. These interactions suggest a critical mechanism by which SAMHD1 could influence tumor behavior and progression in EC.</p><p><strong>Conclusions: </strong>The results from this study underscore the potential of targeting the SAMHD1-TRIM27-PTEN axis as a therapeutic strategy in EC. By providing new insights into the molecular mechanisms underlying EC progression, our research supports the development of novel therapeutic approaches that could contribute to improve treatment strategies for patients with EC.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"89"},"PeriodicalIF":5.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering MOSPD1's impact on breast cancer progression and therapeutic response. 解密 MOSPD1 对乳腺癌进展和治疗反应的影响。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-05 DOI: 10.1186/s13062-024-00531-9
Yiling Jiang, Hailong Li, Sixuan Wu, Baohong Jiang, Lijun Zeng, Yuanbin Tang, Lunqi Luo, Lianjie Ouyang, Wei Du, Yuehua Li
{"title":"Deciphering MOSPD1's impact on breast cancer progression and therapeutic response.","authors":"Yiling Jiang, Hailong Li, Sixuan Wu, Baohong Jiang, Lijun Zeng, Yuanbin Tang, Lunqi Luo, Lianjie Ouyang, Wei Du, Yuehua Li","doi":"10.1186/s13062-024-00531-9","DOIUrl":"10.1186/s13062-024-00531-9","url":null,"abstract":"<p><strong>Background: </strong>Motile Sperm Domain-Containing Protein 1 (MOSPD1) has been implicated in breast cancer (BC) pathophysiology, but its exact role remains unclear. This study aimed to assess MOSPD1 expression levels in BC versus normal tissues and investigate its diagnostic potential.</p><p><strong>Methods: </strong>MOSPD1 expression was analyzed in BC and normal tissues, with Receiver Operating Characteristic analysis for diagnostic evaluation. Validation was performed using immunohistochemistry. Functional studies included tumor growth assays, MOSPD1 suppression and overexpression experiments, and testing BC cell responses to anti-PD-L1 therapy.</p><p><strong>Results: </strong>MOSPD1 expression was significantly higher in BC samples than normal tissues, correlating with poor clinical outcomes in BC patients. MOSPD1 suppression inhibited tumor growth, while overexpression accelerated it. Silencing MOSPD1 enhanced BC cell sensitivity to anti-PD-L1 therapy and decreased Th2 cell activity. In vivo experiments supported these findings, showing the impact of MOSPD1 on tumor growth and response to therapy.</p><p><strong>Conclusions: </strong>Elevated MOSPD1 levels in BC suggest its potential as a biomarker for adverse outcomes. Targeting MOSPD1, particularly with anti-PD-L1 therapy, may effectively inhibit BC tumor growth and modulate immune responses. This study emphasizes the significance of MOSPD1 in BC pathophysiology and highlights its promise as a therapeutic target.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"88"},"PeriodicalIF":5.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shaping root architecture: towards understanding the mechanisms involved in lateral root development. 塑造根系结构:了解侧根发育的相关机制。
IF 5.7 2区 生物学
Biology Direct Pub Date : 2024-10-02 DOI: 10.1186/s13062-024-00535-5
Kavya Yalamanchili, Joop E M Vermeer, Ben Scheres, Viola Willemsen
{"title":"Shaping root architecture: towards understanding the mechanisms involved in lateral root development.","authors":"Kavya Yalamanchili, Joop E M Vermeer, Ben Scheres, Viola Willemsen","doi":"10.1186/s13062-024-00535-5","DOIUrl":"10.1186/s13062-024-00535-5","url":null,"abstract":"<p><p>Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"87"},"PeriodicalIF":5.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信