Integrated machine learning reveals the role of tryptophan metabolism in clear cell renal cell carcinoma and its association with patient prognosis.

IF 5.7 2区 生物学 Q1 BIOLOGY
Fan Li, Haiyi Hu, Liyang Li, Lifeng Ding, Zeyi Lu, Xudong Mao, Ruyue Wang, Wenqin Luo, Yudong Lin, Yang Li, Xianjiong Chen, Ziwei Zhu, Yi Lu, Chenghao Zhou, Mingchao Wang, Liqun Xia, Gonghui Li, Lei Gao
{"title":"Integrated machine learning reveals the role of tryptophan metabolism in clear cell renal cell carcinoma and its association with patient prognosis.","authors":"Fan Li, Haiyi Hu, Liyang Li, Lifeng Ding, Zeyi Lu, Xudong Mao, Ruyue Wang, Wenqin Luo, Yudong Lin, Yang Li, Xianjiong Chen, Ziwei Zhu, Yi Lu, Chenghao Zhou, Mingchao Wang, Liqun Xia, Gonghui Li, Lei Gao","doi":"10.1186/s13062-024-00576-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking.</p><p><strong>Methods: </strong>The influence of tryptophan metabolism on tumor cells was explored using single-cell RNA sequencing data. Genes involved in tryptophan metabolism were identified across both single-cell and bulk-cell dimensions through weighted gene co-expression network analysis (WGCNA) and its single-cell data variant (hdWGCNA). Subsequently, a tryptophan metabolism-related signature was developed using an integrated machine-learning approach. This signature was then examined in multi-omics data to assess its associations with patient clinical features, prognosis, cancer malignancy-related pathways, immune microenvironment, genomic characteristics, and responses to immunotherapy and targeted therapy. Finally, the genes within the signature were validated through experiments including qRT-PCR, Western blot, CCK8 assay, and transwell assay.</p><p><strong>Results: </strong>Dysregulated tryptophan metabolism was identified as a potential driver of the malignant transformation of normal epithelial cells. The tryptophan metabolism-related signature (TMRS) demonstrated robust predictive capability for overall survival (OS) and progression-free survival (PFS) across multiple datasets. Moreover, a high TMRS risk score correlated with increased tumor malignancy, significant metabolic reprogramming, an inflamed yet dysfunctional immune microenvironment, heightened genomic instability, resistance to immunotherapy, and increased sensitivity to certain targeted therapeutics. Experimental validation revealed differential expression of genes within the signature between RCC and adjacent normal tissues, with reduced expression of DDAH1 linked to enhanced proliferation and metastasis of tumor cells.</p><p><strong>Conclusion: </strong>This study investigated the potential impact of dysregulated tryptophan metabolism on clear cell renal cell carcinoma, leading to the development of a tryptophan metabolism-related signature that may provide insights into patient prognosis, tumor biological status, and personalized treatment strategies. This signature serves as a valuable reference for further exploring the role of tryptophan metabolism in renal cell carcinoma and for the development of clinical applications based on this metabolic pathway.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"132"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00576-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking.

Methods: The influence of tryptophan metabolism on tumor cells was explored using single-cell RNA sequencing data. Genes involved in tryptophan metabolism were identified across both single-cell and bulk-cell dimensions through weighted gene co-expression network analysis (WGCNA) and its single-cell data variant (hdWGCNA). Subsequently, a tryptophan metabolism-related signature was developed using an integrated machine-learning approach. This signature was then examined in multi-omics data to assess its associations with patient clinical features, prognosis, cancer malignancy-related pathways, immune microenvironment, genomic characteristics, and responses to immunotherapy and targeted therapy. Finally, the genes within the signature were validated through experiments including qRT-PCR, Western blot, CCK8 assay, and transwell assay.

Results: Dysregulated tryptophan metabolism was identified as a potential driver of the malignant transformation of normal epithelial cells. The tryptophan metabolism-related signature (TMRS) demonstrated robust predictive capability for overall survival (OS) and progression-free survival (PFS) across multiple datasets. Moreover, a high TMRS risk score correlated with increased tumor malignancy, significant metabolic reprogramming, an inflamed yet dysfunctional immune microenvironment, heightened genomic instability, resistance to immunotherapy, and increased sensitivity to certain targeted therapeutics. Experimental validation revealed differential expression of genes within the signature between RCC and adjacent normal tissues, with reduced expression of DDAH1 linked to enhanced proliferation and metastasis of tumor cells.

Conclusion: This study investigated the potential impact of dysregulated tryptophan metabolism on clear cell renal cell carcinoma, leading to the development of a tryptophan metabolism-related signature that may provide insights into patient prognosis, tumor biological status, and personalized treatment strategies. This signature serves as a valuable reference for further exploring the role of tryptophan metabolism in renal cell carcinoma and for the development of clinical applications based on this metabolic pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Direct
Biology Direct 生物-生物学
CiteScore
6.40
自引率
10.90%
发文量
32
审稿时长
7 months
期刊介绍: Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信