Bone Research最新文献

筛选
英文 中文
Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain 大脑通过 PGE2 骨骼交感神经调节负重骨骼:对踝关节骨关节炎和疼痛的影响
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-05 DOI: 10.1038/s41413-024-00316-w
Feng Gao, Qimiao Hu, Wenwei Chen, Jilong Li, Cheng Qi, Yiwen Yan, Cheng Qian, Mei Wan, James Ficke, Junying Zheng, Xu Cao
{"title":"Brain regulates weight bearing bone through PGE2 skeletal interoception: implication of ankle osteoarthritis and pain","authors":"Feng Gao, Qimiao Hu, Wenwei Chen, Jilong Li, Cheng Qi, Yiwen Yan, Cheng Qian, Mei Wan, James Ficke, Junying Zheng, Xu Cao","doi":"10.1038/s41413-024-00316-w","DOIUrl":"https://doi.org/10.1038/s41413-024-00316-w","url":null,"abstract":"<p>Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of <i>cyclooxygenase-2 (COX2)</i> in the osteoblast lineage cells or knockout of receptor 4 (<i>EP4)</i> in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of <i>TrkA</i> in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"265 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis. 靶向敲除滑膜巨噬细胞中的 PGAM5 能有效缓解骨关节炎。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-03-04 DOI: 10.1038/s41413-024-00318-8
Yuhang Liu, Ruihan Hao, Jia Lv, Jie Yuan, Xuelei Wang, Churong Xu, Ding Ma, Zhouyi Duan, Bingjun Zhang, Liming Dai, Yiyun Cheng, Wei Lu, Xiaoling Zhang
{"title":"Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis.","authors":"Yuhang Liu, Ruihan Hao, Jia Lv, Jie Yuan, Xuelei Wang, Churong Xu, Ding Ma, Zhouyi Duan, Bingjun Zhang, Liming Dai, Yiyun Cheng, Wei Lu, Xiaoling Zhang","doi":"10.1038/s41413-024-00318-8","DOIUrl":"10.1038/s41413-024-00318-8","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of β-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and β-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"15"},"PeriodicalIF":12.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis 基于 DNA 四面体的铁突变抑制纳米粒子:卓越的姜黄素输送能力和糖尿病骨质疏松症的缓解作用
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-29 DOI: 10.1038/s41413-024-00319-7
Yong Li, Zhengwen Cai, Wenjuan Ma, Long Bai, En Luo, Yunfeng Lin
{"title":"A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis","authors":"Yong Li, Zhengwen Cai, Wenjuan Ma, Long Bai, En Luo, Yunfeng Lin","doi":"10.1038/s41413-024-00319-7","DOIUrl":"https://doi.org/10.1038/s41413-024-00319-7","url":null,"abstract":"<p>Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"6 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139994220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging impairs the osteocytic regulation of collagen integrity and bone quality 衰老会损害骨细胞对胶原蛋白完整性和骨骼质量的调节作用
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-26 DOI: 10.1038/s41413-023-00303-7
Charles A. Schurman, Serra Kaya, Neha Dole, Nadja M. Maldonado Luna, Natalia Castillo, Ryan Potter, Jacob P. Rose, Joanna Bons, Christina D. King, Jordan B. Burton, Birgit Schilling, Simon Melov, Simon Tang, Eric Schaible, Tamara Alliston
{"title":"Aging impairs the osteocytic regulation of collagen integrity and bone quality","authors":"Charles A. Schurman, Serra Kaya, Neha Dole, Nadja M. Maldonado Luna, Natalia Castillo, Ryan Potter, Jacob P. Rose, Joanna Bons, Christina D. King, Jordan B. Burton, Birgit Schilling, Simon Melov, Simon Tang, Eric Schaible, Tamara Alliston","doi":"10.1038/s41413-023-00303-7","DOIUrl":"https://doi.org/10.1038/s41413-023-00303-7","url":null,"abstract":"<p>Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (<i>TβRII</i><sup><i>ocy−/−</i></sup>) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male <i>TβRII</i><sup><i>ocy−/−</i></sup> bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"138 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development. 软骨细胞中 Piezo1 的表达控制着软骨内骨化和骨关节炎的发展。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-23 DOI: 10.1038/s41413-024-00315-x
Laura J Brylka, Assil-Ramin Alimy, Miriam E A Tschaffon-Müller, Shan Jiang, Tobias Malte Ballhause, Anke Baranowsky, Simon von Kroge, Julian Delsmann, Eva Pawlus, Kian Eghbalian, Klaus Püschel, Astrid Schoppa, Melanie Haffner-Luntzer, David J Beech, Frank Timo Beil, Michael Amling, Johannes Keller, Anita Ignatius, Timur A Yorgan, Tim Rolvien, Thorsten Schinke
{"title":"Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development.","authors":"Laura J Brylka, Assil-Ramin Alimy, Miriam E A Tschaffon-Müller, Shan Jiang, Tobias Malte Ballhause, Anke Baranowsky, Simon von Kroge, Julian Delsmann, Eva Pawlus, Kian Eghbalian, Klaus Püschel, Astrid Schoppa, Melanie Haffner-Luntzer, David J Beech, Frank Timo Beil, Michael Amling, Johannes Keller, Anita Ignatius, Timur A Yorgan, Tim Rolvien, Thorsten Schinke","doi":"10.1038/s41413-024-00315-x","DOIUrl":"10.1038/s41413-024-00315-x","url":null,"abstract":"<p><p>Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1<sup>Col2a1Cre</sup>), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1<sup>Col2a1Cre</sup> animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1<sup>Col2a1Cre</sup> mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"12"},"PeriodicalIF":12.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. 神经源性异位骨化中的器官间通信:脑源性细胞外囊泡的作用。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-22 DOI: 10.1038/s41413-023-00310-8
Weicheng Lu, Jianfei Yan, Chenyu Wang, Wenpin Qin, Xiaoxiao Han, Zixuan Qin, Yu Wei, Haoqing Xu, Jialu Gao, Changhe Gao, Tao Ye, Franklin R Tay, Lina Niu, Kai Jiao
{"title":"Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles.","authors":"Weicheng Lu, Jianfei Yan, Chenyu Wang, Wenpin Qin, Xiaoxiao Han, Zixuan Qin, Yu Wei, Haoqing Xu, Jialu Gao, Changhe Gao, Tao Ye, Franklin R Tay, Lina Niu, Kai Jiao","doi":"10.1038/s41413-023-00310-8","DOIUrl":"10.1038/s41413-023-00310-8","url":null,"abstract":"<p><p>Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"11"},"PeriodicalIF":12.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881583/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Ammonia promotes the proliferation of bone marrow-derived mesenchymal stem cells by regulating the Akt/mTOR/S6k pathway. 作者更正:氨通过调节 Akt/mTOR/S6k 通路促进骨髓间充质干细胞增殖
IF 14.3 1区 医学
Bone Research Pub Date : 2024-02-20 DOI: 10.1038/s41413-024-00314-y
Yu Liu, Xiangxian Zhang, Wei Wang, Ting Liu, Jun Ren, Siyuan Chen, Tianqi Lu, Yan Tie, Xia Yuan, Fei Mo, Jingyun Yang, Yuquan Wei, Xiawei Wei
{"title":"Author Correction: Ammonia promotes the proliferation of bone marrow-derived mesenchymal stem cells by regulating the Akt/mTOR/S6k pathway.","authors":"Yu Liu, Xiangxian Zhang, Wei Wang, Ting Liu, Jun Ren, Siyuan Chen, Tianqi Lu, Yan Tie, Xia Yuan, Fei Mo, Jingyun Yang, Yuquan Wei, Xiawei Wei","doi":"10.1038/s41413-024-00314-y","DOIUrl":"10.1038/s41413-024-00314-y","url":null,"abstract":"","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"9"},"PeriodicalIF":14.3,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139911969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RANKL inhibition reduces lesional cellularity and Gαs variant expression and enables osteogenic maturation in fibrous dysplasia 抑制 RANKL 可降低纤维发育不良的病变细胞性和 Gαs 变异表达,并促进成骨成熟
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-20 DOI: 10.1038/s41413-023-00311-7
Luis F. de Castro, Jarred M. Whitlock, Zachary Michel, Kristen Pan, Jocelyn Taylor, Vivian Szymczuk, Brendan Boyce, Daniel Martin, Vardit Kram, Rebeca Galisteo, Kamran Melikov, Leonid V. Chernomordik, Michael T. Collins, Alison M. Boyce
{"title":"RANKL inhibition reduces lesional cellularity and Gαs variant expression and enables osteogenic maturation in fibrous dysplasia","authors":"Luis F. de Castro, Jarred M. Whitlock, Zachary Michel, Kristen Pan, Jocelyn Taylor, Vivian Szymczuk, Brendan Boyce, Daniel Martin, Vardit Kram, Rebeca Galisteo, Kamran Melikov, Leonid V. Chernomordik, Michael T. Collins, Alison M. Boyce","doi":"10.1038/s41413-023-00311-7","DOIUrl":"https://doi.org/10.1038/s41413-023-00311-7","url":null,"abstract":"<p>Fibrous dysplasia (FD) is a rare, disabling skeletal disease for which there are no established treatments. Growing evidence supports inhibiting the osteoclastogenic factor receptor activator of nuclear kappa-B ligand (RANKL) as a potential treatment strategy. In this study, we investigated the mechanisms underlying RANKL inhibition in FD tissue and its likely indirect effects on osteoprogenitors by evaluating human FD tissue pre- and post-treatment in a phase 2 clinical trial of denosumab (NCT03571191) and in murine in vivo and ex vivo preclinical models. Histological analysis of human and mouse tissue demonstrated increased osteogenic maturation, reduced cellularity, and reduced expression of the pathogenic Gα<sub>s</sub> variant in FD lesions after RANKL inhibition. RNA sequencing of human and mouse tissue supported these findings. The interaction between osteoclasts and mutant osteoprogenitors was further assessed in an ex vivo lesion model, which indicated that the proliferation of abnormal FD osteoprogenitors was dependent on osteoclasts. The results from this study demonstrated that, in addition to its expected antiosteoclastic effect, denosumab reduces FD lesion activity by decreasing FD cell proliferation and increasing osteogenic maturation, leading to increased bone formation within lesions. These findings highlight the unappreciated role of cellular crosstalk between osteoclasts and preosteoblasts/osteoblasts as a driver of FD pathology and demonstrate a novel mechanism of action of denosumab in the treatment of bone disease.</p><p>TRIAL REGISTRATION: ClinicalTrials.gov NCT03571191</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"16 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights and implications of sexual dimorphism in osteoporosis. 骨质疏松症中性畸形的见解和影响。
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-18 DOI: 10.1038/s41413-023-00306-4
Yuan-Yuan Zhang, Na Xie, Xiao-Dong Sun, Edouard C Nice, Yih-Cherng Liou, Canhua Huang, Huili Zhu, Zhisen Shen
{"title":"Insights and implications of sexual dimorphism in osteoporosis.","authors":"Yuan-Yuan Zhang, Na Xie, Xiao-Dong Sun, Edouard C Nice, Yih-Cherng Liou, Canhua Huang, Huili Zhu, Zhisen Shen","doi":"10.1038/s41413-023-00306-4","DOIUrl":"10.1038/s41413-023-00306-4","url":null,"abstract":"<p><p>Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"12 1","pages":"8"},"PeriodicalIF":12.7,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications 骨关节炎微环境的空间分析:技术、见解和应用
IF 12.7 1区 医学
Bone Research Pub Date : 2024-02-04 DOI: 10.1038/s41413-023-00304-6
Xiwei Fan, Antonia Rujia Sun, Reuben S. E. Young, Isaac O. Afara, Brett R. Hamilton, Louis Jun Ye Ong, Ross Crawford, Indira Prasadam
{"title":"Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications","authors":"Xiwei Fan, Antonia Rujia Sun, Reuben S. E. Young, Isaac O. Afara, Brett R. Hamilton, Louis Jun Ye Ong, Ross Crawford, Indira Prasadam","doi":"10.1038/s41413-023-00304-6","DOIUrl":"https://doi.org/10.1038/s41413-023-00304-6","url":null,"abstract":"<p>Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"30 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信