树鼩作为肌肉骨骼疾病和衰老的新动物模型

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Xiaocui Wei, Honghao Li, Jingyang Qiu, Jianlin Jiao, Xiongtian Guo, Gaosheng Yin, Ping Yang, Yi Han, Qiongzhi Zhao, Hao Zeng, Zhi Rao, Xuefei Gao, Kai Li, Pinglin Lai, Sheng Zhang, Chengliang Yang, Di Lu, Xiaochun Bai
{"title":"树鼩作为肌肉骨骼疾病和衰老的新动物模型","authors":"Xiaocui Wei, Honghao Li, Jingyang Qiu, Jianlin Jiao, Xiongtian Guo, Gaosheng Yin, Ping Yang, Yi Han, Qiongzhi Zhao, Hao Zeng, Zhi Rao, Xuefei Gao, Kai Li, Pinglin Lai, Sheng Zhang, Chengliang Yang, Di Lu, Xiaochun Bai","doi":"10.1038/s41413-024-00367-z","DOIUrl":null,"url":null,"abstract":"<p>Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs. Age-related spontaneous IDD in parallel with a gradual disappearance of notochordal cells were commonly observed in tree shrews upon skeletal maturity with no sex differences, while age-related osteoporotic changes including bone loss in the metaphyses were primarily presented in aged females, similar to observations in humans. Moreover, in the osteochondral defect model, tree shrew cartilage exhibited behavior similar to that of humans, characterized by a more restricted self-healing capacity compared to the rapid spontaneous healing of joint surfaces observed in rats. The induced OA model in tree shrews was highly efficient and reproducible, characterized by gradual deterioration of articular cartilage, recapitulating the human OA phenotype to some degree. Surgery-induced IDD models were successfully established in tree shrews, in which the lumbar spine instability model developed slow progressive disc degeneration with more similarity to the clinical state, whereas the needle puncture model led to the rapid development of IDD with more severe symptoms. Taken together, our findings pave the way for the development of the tree shrew as a new animal model for the study of MSDs and aging.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"11 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree shrew as a new animal model for musculoskeletal disorders and aging\",\"authors\":\"Xiaocui Wei, Honghao Li, Jingyang Qiu, Jianlin Jiao, Xiongtian Guo, Gaosheng Yin, Ping Yang, Yi Han, Qiongzhi Zhao, Hao Zeng, Zhi Rao, Xuefei Gao, Kai Li, Pinglin Lai, Sheng Zhang, Chengliang Yang, Di Lu, Xiaochun Bai\",\"doi\":\"10.1038/s41413-024-00367-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs. Age-related spontaneous IDD in parallel with a gradual disappearance of notochordal cells were commonly observed in tree shrews upon skeletal maturity with no sex differences, while age-related osteoporotic changes including bone loss in the metaphyses were primarily presented in aged females, similar to observations in humans. Moreover, in the osteochondral defect model, tree shrew cartilage exhibited behavior similar to that of humans, characterized by a more restricted self-healing capacity compared to the rapid spontaneous healing of joint surfaces observed in rats. The induced OA model in tree shrews was highly efficient and reproducible, characterized by gradual deterioration of articular cartilage, recapitulating the human OA phenotype to some degree. Surgery-induced IDD models were successfully established in tree shrews, in which the lumbar spine instability model developed slow progressive disc degeneration with more similarity to the clinical state, whereas the needle puncture model led to the rapid development of IDD with more severe symptoms. Taken together, our findings pave the way for the development of the tree shrew as a new animal model for the study of MSDs and aging.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00367-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00367-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

椎间盘退变(IDD)、骨关节炎(OA)和骨质疏松症(OP)是常见的肌肉骨骼疾病(MSDs),具有相似的年龄相关危险因素,是导致残疾的主要原因。然而,由于缺乏临床相关的动物模型,成功的治疗开发和翻译一直受到阻碍。在这项研究中,我们研究了树鼩作为一种与灵长类有密切亲缘关系的小型哺乳动物作为MSDs的新动物模型的潜在适用性。与年龄相关的自发性IDD与脊索细胞的逐渐消失在骨骼成熟的树鼩中普遍存在,没有性别差异,而与年龄相关的骨质疏松症变化,包括形而上的骨质流失,主要出现在老年女性中,与人类的观察结果相似。此外,在骨软骨缺损模型中,树鼩软骨表现出与人类相似的行为,与在大鼠中观察到的关节表面快速自发愈合相比,其自我修复能力更有限。树鼩OA诱导模型具有高效、可重复性好、关节软骨逐渐退化的特点,在一定程度上再现了人类OA表型。在树鼩中成功建立手术诱导的IDD模型,其中腰椎不稳定模型发展为缓慢进行性椎间盘退变,更接近临床状态,而针刺模型导致IDD发展迅速,症状更严重。总之,我们的发现为树鼩作为研究MSDs和衰老的新动物模型的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tree shrew as a new animal model for musculoskeletal disorders and aging

Tree shrew as a new animal model for musculoskeletal disorders and aging

Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs. Age-related spontaneous IDD in parallel with a gradual disappearance of notochordal cells were commonly observed in tree shrews upon skeletal maturity with no sex differences, while age-related osteoporotic changes including bone loss in the metaphyses were primarily presented in aged females, similar to observations in humans. Moreover, in the osteochondral defect model, tree shrew cartilage exhibited behavior similar to that of humans, characterized by a more restricted self-healing capacity compared to the rapid spontaneous healing of joint surfaces observed in rats. The induced OA model in tree shrews was highly efficient and reproducible, characterized by gradual deterioration of articular cartilage, recapitulating the human OA phenotype to some degree. Surgery-induced IDD models were successfully established in tree shrews, in which the lumbar spine instability model developed slow progressive disc degeneration with more similarity to the clinical state, whereas the needle puncture model led to the rapid development of IDD with more severe symptoms. Taken together, our findings pave the way for the development of the tree shrew as a new animal model for the study of MSDs and aging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信