{"title":"Both levoglucosan kinase activity and transport capacity limit the utilization of levoglucosan in Saccharomyces cerevisiae.","authors":"Mengdan Yang, Tiandi Wei, Kai Wang, Liqun Jiang, Dihao Zeng, Xinhua Sun, Weifeng Liu, Yu Shen","doi":"10.1186/s13068-022-02195-x","DOIUrl":"https://doi.org/10.1186/s13068-022-02195-x","url":null,"abstract":"<p><p>Manufacturing fuels and chemicals from cellulose materials is a promising strategy to achieve carbon neutralization goals. In addition to the commonly used enzymatic hydrolysis by cellulase, rapid pyrolysis is another way to degrade cellulose. The sugar obtained by fast pyrolysis is not glucose, but rather its isomer, levoglucosan (LG). Here, we revealed that both levoglucosan kinase activity and the transportation of levoglucosan are bottlenecks for LG utilization in Saccharomyces cerevisiae, a widely used cell factory. We revealed that among six heterologous proteins that had levoglucosan kinase activity, the 1,6-anhydro-N-acetylmuramic acid kinase from Rhodotorula toruloides was the best choice to construct levoglucosan-utilizing S. cerevisiae strain. Furthermore, we revealed that the amino acid residue Q341 and W455, which were located in the middle of the transport channel closer to the exit, are the sterically hindered barrier to levoglucosan transportation in Gal2p, a hexose transporter. The engineered yeast strain expressing the genes encoding the 1,6-anhydro-N-acetylmuramic acid kinase from R. toruloides and transporter mutant Gal2p<sup>Q341A</sup> or Gal2p<sup>W455A</sup> consumed ~ 4.2 g L<sup>-1</sup> LG in 48 h, which is the fastest LG-utilizing S. cerevisiae strain to date.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"94"},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40357122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Wang, Na Li, Jiepeng Zhan, Xinfa Wang, Xue-Rong Zhou, Jiaqin Shi, Hanzhong Wang
{"title":"Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus.","authors":"Ying Wang, Na Li, Jiepeng Zhan, Xinfa Wang, Xue-Rong Zhou, Jiaqin Shi, Hanzhong Wang","doi":"10.1186/s13068-022-02192-0","DOIUrl":"https://doi.org/10.1186/s13068-022-02192-0","url":null,"abstract":"<p><strong>Background: </strong>JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited.</p><p><strong>Results: </strong>Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway.</p><p><strong>Conclusions: </strong>The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"15 1","pages":"93"},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs.","authors":"Xu Han, Ya-Wen Zhang, Jin-Yang Liu, Jian-Fang Zuo, Ze-Chang Zhang, Liang Guo, Yuan-Ming Zhang","doi":"10.1186/s13068-022-02191-1","DOIUrl":"https://doi.org/10.1186/s13068-022-02191-1","url":null,"abstract":"<p><strong>Background: </strong>The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited.</p><p><strong>Results: </strong>In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein-protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite-lipid, 62 trait-metabolite, and 89 trait-lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene-trait or gene-metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)-GmSEI-GmDGAT1a-triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)-GmPHS-D-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)-GmbZIP123-GmHD-ZIPIII-10-miR166s-oil content.</p><p><strong>Conclusions: </strong>This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"92"},"PeriodicalIF":0.0,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9461130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33450936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum.","authors":"Xiao-Li Wang, Jin-Jie Zhou, Sheng Liu, Ya-Qin Sun, Zhi-Long Xiu","doi":"10.1186/s13068-022-02190-2","DOIUrl":"https://doi.org/10.1186/s13068-022-02190-2","url":null,"abstract":"<p><strong>Background: </strong>Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)<sub>2</sub> as a CO<sub>2</sub> capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO<sub>3</sub> by Clostridium butyricum DL07.</p><p><strong>Results: </strong>In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H<sub>2</sub> to CO<sub>2</sub> in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)<sub>2</sub> group compared to 5 M NaOH as the CO<sub>2</sub> capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N<sub>2</sub> with negligible CO<sub>2</sub> emissions. During CO<sub>2</sub> capture in situ, micro-nano calcite particles of CaCO<sub>3</sub> with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)<sub>2</sub> group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO.</p><p><strong>Conclusions: </strong>Ca(OH)<sub>2</sub> was used as a CO<sub>2</sub> capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO<sub>3</sub> and green H<sub>2</sub> were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"91"},"PeriodicalIF":0.0,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40345874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimum flux rerouting for efficient production of naringenin from acetate in engineered Escherichia coli.","authors":"Dong Hwan Kim, Hyun Gyu Hwang, Gyoo Yeol Jung","doi":"10.1186/s13068-022-02188-w","DOIUrl":"https://doi.org/10.1186/s13068-022-02188-w","url":null,"abstract":"<p><strong>Background: </strong>Microbial production of naringenin has received much attention owing to its pharmaceutical applicability and potential as a key molecular scaffold for various flavonoids. In the microbial fermentation, a cheap and abundant feedstock is required to achieve an economically feasible bioprocess. From this perspective, utilizing acetate for naringenin production could be an effective strategy, with the advantages of both low-cost and abundant feedstock. For the efficient production of naringenin using acetate, identification of the appropriate regulatory node of carbon flux in the biosynthesis of naringenin from acetate would be important. While acetyl-CoA is a key precursor for naringenin production, carbon flux between the TCA cycle and anaplerosis is effectively regulated at the isocitrate node through glyoxylate shunt in acetate metabolism. Accordingly, appropriate rerouting of TCA cycle intermediates from anaplerosis into naringenin biosynthesis via acetyl-CoA replenishment would be required.</p><p><strong>Results: </strong>This study identified the isocitrate and oxaloacetate (OAA) nodes as key regulatory nodes for the naringenin production using acetate. Precise rerouting at the OAA node for enhanced acetyl-CoA was conducted, avoiding extensive loss of OAA by fine-tuning the expression of pckA (encoding phosphoenolpyruvate carboxykinase) with flux redistribution between naringenin biosynthesis and cell growth at the isocitrate node. Consequently, the flux-optimized strain exhibited a significant increase in naringenin production, a 27.2-fold increase (with a 38.3-fold increase of naringenin yield on acetate) over that by the unoptimized strain, producing 97.02 mg/L naringenin with 21.02 mg naringenin/g acetate, which is a competitive result against those in previous studies on conventional substrates, such as glucose.</p><p><strong>Conclusions: </strong>Collectively, we demonstrated efficient flux rerouting for maximum naringenin production from acetate in E. coli. This study was the first attempt of naringenin production from acetate and suggested the potential of biosynthesis of various flavonoids derived from naringenin using acetate.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"90"},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40346504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Xiao, Xiufang Liu, Yunzi Feng, Lin Zheng, Mouming Zhao, Mingtao Huang
{"title":"Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation.","authors":"Han Xiao, Xiufang Liu, Yunzi Feng, Lin Zheng, Mouming Zhao, Mingtao Huang","doi":"10.1186/s13068-022-02186-y","DOIUrl":"https://doi.org/10.1186/s13068-022-02186-y","url":null,"abstract":"<p><strong>Background: </strong>The production and processing of animal-based products generates many collagen-rich by-products, which have received attention both for exploitation to increase their added value and to reduce their negative environmental impact. The collagen-rich by-products can be hydrolyzed by collagenases for further utilization. Therefore, collagenases are of benefit for efficient collagen materials processing. An alternative and safe way to produce secreted collagenases is needed.</p><p><strong>Results: </strong>Two collagenases from Hathewaya histolytica, ColG and ColH, were successfully secreted by the yeast Saccharomyces cerevisiae. Compared with the native signal peptide of collagenase, the α-factor leader is more efficient in guiding collagenase secretion. Collagenase secretion was significantly increased in YPD medium by supplementing with calcium and zinc ions. Recombinant collagenase titers reached 68 U/mL and 55 U/mL for ColG and ColH, respectively. Collagenase expression imposed metabolic perturbations on yeast cells; substrate consumption, metabolites production and intracellular cofactor levels changed in engineered strains. Both recombinant collagenases from yeast could hydrolyze soluble and insoluble collagen materials. Recombinant ColG and ColH showed a synergistic effect on efficient collagen digestion.</p><p><strong>Conclusions: </strong>Sufficient calcium and zinc ions are essential for active collagenase production by yeast. Collagenase secretion was increased by optimization of expression cassettes. Collagenase expression imposed metabolic burden and cofactor perturbations on yeast cells, which could be improved through metabolic engineering. Our work provides a useful way to produce collagenases for collagen resource utilization.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"15 1","pages":"89"},"PeriodicalIF":0.0,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9917765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of monogalactosyldiacylglycerol synthesis by down-regulation of MGD1 leads to membrane lipid remodeling and enhanced triacylglycerol biosynthesis in Chlamydomonas reinhardtii.","authors":"Jun-Woo Lee, Min-Woo Lee, Chun-Zhi Jin, Hee-Mock Oh, EonSeon Jin, Hyung-Gwan Lee","doi":"10.1186/s13068-022-02187-x","DOIUrl":"https://doi.org/10.1186/s13068-022-02187-x","url":null,"abstract":"<p><strong>Background: </strong>Membrane lipid remodeling involves regulating the physiochemical modification of cellular membranes against abiotic stress or senescence, and it could be a trigger to increase neutral lipid content. In algae and higher plants, monogalactosyldiacylglycerol (MGDG) constitutes the highest proportion of total membrane lipids and is highly reduced as part of the membrane lipid remodeling response under several abiotic stresses. However, genetic regulation of MGDG synthesis and its influence on lipid synthesis has not been studied in microalgae. For development of an industrial microalgae strain showing high accumulation of triacylglycerol (TAG) by promoting membrane lipid remodeling, MGDG synthase 1 (MGD1) down-regulated mutant of Chlamydomonas reinhardtii (Cr-mgd1) was generated and evaluated for its suitability for biodiesel feedstock.</p><p><strong>Results: </strong>The Cr-mgd1 showed a 65% decrease in CrMGD1 gene expression level, 22% reduction in MGDG content, and 1.39 and 5.40 times increase in diacylglyceryltrimethylhomoserines (DGTS) and TAG, respectively. The expression levels of most genes related to the decomposition of MGDG (plastid galactoglycerolipid degradation1) and TAG metabolism (diacylglycerol O-acyltransferase1, phospholipid:diacylglycerol acyltransferase, and major lipid droplet protein) were increased. The imbalance of DGDG/MGDG ratio in Cr-mgd1 caused reduced photosynthetic electron transport, resulting in less light energy utilization and increased reactive oxygen species levels. In addition, endoplasmic reticulum stress was induced by increased DGTS levels. Thus, accelerated TAG accumulation in Cr-mgd1 was stimulated by increased cellular stress as well as lipid remodeling. Under high light (HL) intensity (400 µmol photons/m<sup>2</sup>/s), TAG productivity in Cr-mgd1-HL (1.99 mg/L/d) was 2.71 times higher than that in wild type (WT-HL). Moreover, under both nitrogen starvation and high light intensity, the lipid (124.55 mg/L/d), TAG (20.03 mg/L/d), and maximum neutral lipid (56.13 mg/L/d) productivity were the highest.</p><p><strong>Conclusions: </strong>By inducing lipid remodeling through the mgd1 gene expression regulation, the mutant not only showed high neutral lipid content but also reached the maximum neutral lipid productivity through cultivation under high light and nitrogen starvation conditions, thereby possessing improved biomass properties that are the most suitable for high quality biodiesel production. Thus, this mutant may help understand the role of MGD1 in lipid synthesis in Chlamydomonas and may be used to produce high amounts of TAG.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"88"},"PeriodicalIF":0.0,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40660942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.","authors":"Qiang Wang, Xian Zhang, Kexin Ren, Rumeng Han, Ruiqi Lu, Teng Bao, Xuewei Pan, Taowei Yang, Meijuan Xu, Zhiming Rao","doi":"10.1186/s13068-022-02185-z","DOIUrl":"https://doi.org/10.1186/s13068-022-02185-z","url":null,"abstract":"<p><strong>Background: </strong>Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.</p><p><strong>Results: </strong>This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.</p><p><strong>Conclusions: </strong>The recombinant strain BSMAY-4-P<sub>srfA</sub> provides an economical and efficient strategy for large-scale industrial production of acetoin.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"87"},"PeriodicalIF":0.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40412924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sorbicillinoids hyperproduction without affecting the cellulosic enzyme production in Trichoderma reesei JNTR5.","authors":"Chengcheng Li, Ruihan Gu, Fengming Lin, Huining Xiao","doi":"10.1186/s13068-022-02183-1","DOIUrl":"https://doi.org/10.1186/s13068-022-02183-1","url":null,"abstract":"<p><strong>Background: </strong>Microbial production of bioactive secondary metabolites is challenging as most of the encoding genes are silent; and even if they are activated, the biosynthetic pathways are usually complex. Sorbicillinoids with multifunctional bioactivities are examples of these problems, which if solved can result in a more sustainable, simple supply of these important compounds to the pharmaceutical industry. As an excellent producer of cellulosic enzymes, Trichoderma reesei can secrete various sorbicillinoids.</p><p><strong>Results: </strong>Here, we obtained a T. reesei mutant strain JNTR5 from the random mutation during overexpression of gene Tr69957 in T. reesei RUT-C30. JNTR5 exhibited a significant constitutive increase in sorbicillinoids production without affecting the cellulosic enzyme production. Confocal laser scanning microscope (CLSM) results indicated that sorbicillinoids were distributed in both mycelium and spores of JNTR5 with blue and green fluorescence. Compared with RUT-C30, JNTR5 displayed different cell morphology, reduced growth rate, and increased sporulation, but a similar biomass accumulation. Furthermore, transcriptome analysis revealed that all genes belonging to the sorbicillinoid gene cluster were upregulated, while most cellulase-encoding genes were downregulated. The cell wall integrity of JNTR5 was damaged, which might benefit the cellulase secretion and contribute to the almost unchanged cellulase and hemicellulase activity given that the damaged cell wall can enhance the secretion of the enzymes.</p><p><strong>Conclusions: </strong>For the first time, we constructed a sorbicillinoids hyperproduction T. reesei platform with comparable cellulosic enzymes production. This outperformance of JNTR5, which is strain-specific, is proposed to be attributed to the overexpression of gene Tr69957, causing the chromosome remodeling and subsequently changing the cell morphology, structure, and the global gene expression as shown by phenotype and the transcriptome analysis of JNTR5. Overall, JNTR5 shows great potential for industrial microbial production of sorbicillinoids from cellulose and serves as an excellent model for investigating the distribution and secretion of yellow pigments in T. reesei.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"85"},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40435388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic engineering of Escherichia coli for direct production of vitamin C from D-glucose.","authors":"Yong-Sheng Tian, Yong-Dong Deng, Wen-Hui Zhang, Yu-Wang, Jing Xu, Jian-Jie Gao, Bo-Wang, Xiao-Yan Fu, Hong-Juan Han, Zhen-Jun Li, Li-Juan Wang, Ri-He Peng, Quan-Hong Yao","doi":"10.1186/s13068-022-02184-0","DOIUrl":"10.1186/s13068-022-02184-0","url":null,"abstract":"<p><strong>Background: </strong>Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process. While, 2-KLG, not vitamin C, is synthesized from nearly all current one-step fermentation processes. Vitamin C is naturally synthesized from glucose in Arabidopsis thaliana via a ten-step reaction pathway that is encoded by ten genes. The main objective of this study was to directly produce vitamin C from D-glucose in Escherichia coli by expression of the genes from the A. thaliana vitamin C biosynthetic pathway.</p><p><strong>Results: </strong>Therefore, the ten genes of whole vitamin C synthesis pathway of A. thaliana were chemically synthesized, and an engineered strain harboring these genes was constructed in this study. The direct production of vitamin C from D-glucose based on one-step fermentation was achieved using this engineered strain and at least 1.53 mg/L vitamin C was produced in shaking flasks.</p><p><strong>Conclusions: </strong>The study demonstrates the feasibility of one-step fermentation for the production of vitamin C from D-glucose. Importantly, the one-step process has significant advantages compared with the currently used fermentation process: it can save multiple physical and chemical steps needed to convert D-glucose to D-sorbitol; it also does not involve the associated down-streaming steps required to convert 2-KLG into vitamin C.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"86"},"PeriodicalIF":0.0,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40418618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}