Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.

Qiang Wang, Xian Zhang, Kexin Ren, Rumeng Han, Ruiqi Lu, Teng Bao, Xuewei Pan, Taowei Yang, Meijuan Xu, Zhiming Rao
{"title":"Acetoin production from lignocellulosic biomass hydrolysates with a modular metabolic engineering system in Bacillus subtilis.","authors":"Qiang Wang,&nbsp;Xian Zhang,&nbsp;Kexin Ren,&nbsp;Rumeng Han,&nbsp;Ruiqi Lu,&nbsp;Teng Bao,&nbsp;Xuewei Pan,&nbsp;Taowei Yang,&nbsp;Meijuan Xu,&nbsp;Zhiming Rao","doi":"10.1186/s13068-022-02185-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.</p><p><strong>Results: </strong>This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.</p><p><strong>Conclusions: </strong>The recombinant strain BSMAY-4-P<sub>srfA</sub> provides an economical and efficient strategy for large-scale industrial production of acetoin.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"87"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400278/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-022-02185-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Background: Acetoin (AC) is a vital platform chemical widely used in food, pharmaceutical and chemical industries. With increasing concern over non-renewable resources and environmental issues, using low-cost biomass for acetoin production by microbial fermentation is undoubtedly a promising strategy.

Results: This work reduces the disadvantages of Bacillus subtilis during fermentation by regulating genes involved in spore formation and autolysis. Then, optimizing intracellular redox homeostasis through Rex protein mitigated the detrimental effects of NADH produced by the glycolytic metabolic pathway on the process of AC production. Subsequently, multiple pathways that compete with AC production are blocked to optimize carbon flux allocation. Finally, the population cell density-induced promoter was used to enhance the AC synthesis pathway. Fermentation was carried out in a 5-L bioreactor using bagasse lignocellulosic hydrolysate, resulting in a final titer of 64.3 g/L, which was 89.5% of the theoretical yield.

Conclusions: The recombinant strain BSMAY-4-PsrfA provides an economical and efficient strategy for large-scale industrial production of acetoin.

Abstract Image

Abstract Image

Abstract Image

枯草芽孢杆菌模块化代谢工程系统中木质纤维素生物质水解物生产乙酰素。
背景:乙酰托因(AC)是一种重要的平台化学品,广泛应用于食品、制药和化工等行业。随着人们对不可再生资源和环境问题的日益关注,利用低成本的生物质进行微生物发酵生产乙酰乙醇无疑是一种很有前途的策略。结果:本工作通过调控参与孢子形成和自溶的基因,减少了枯草芽孢杆菌在发酵过程中的劣势。然后,通过Rex蛋白优化细胞内氧化还原稳态,减轻糖酵解代谢途径产生的NADH对AC生成过程的不利影响。随后,阻断与AC生产竞争的多条路径,以优化碳通量分配。最后,利用群体细胞密度诱导启动子增强AC合成途径。以蔗渣木质纤维素水解物为原料,在5-L生物反应器中进行发酵,最终滴度为64.3 g/L,为理论产率的89.5%。结论:重组菌株BSMAY-4-PsrfA为乙酰素的大规模工业化生产提供了一种经济高效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信