{"title":"Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts.","authors":"Mei-Xian Li, Qian-Qi Wei, Hui-Lin Mo, Yu Ren, Wei Zhang, Huan-Jun Lu, Yoon Ki Joung","doi":"10.1186/s40824-023-00399-2","DOIUrl":"10.1186/s40824-023-00399-2","url":null,"abstract":"<p><p>The arterial occlusive disease is one of the leading causes of cardiovascular diseases, often requiring revascularization. Lack of suitable small-diameter vascular grafts (SDVGs), infection, thrombosis, and intimal hyperplasia associated with synthetic vascular grafts lead to a low success rate of SDVGs (< 6 mm) transplantation in the clinical treatment of cardiovascular diseases. The development of fabrication technology along with vascular tissue engineering and regenerative medicine technology allows biological tissue-engineered vascular grafts to become living grafts, which can integrate, remodel, and repair the host vessels as well as respond to the surrounding mechanical and biochemical stimuli. Hence, they potentially alleviate the shortage of existing vascular grafts. This paper evaluates the current advanced fabrication technologies for SDVGs, including electrospinning, molding, 3D printing, decellularization, and so on. Various characteristics of synthetic polymers and surface modification methods are also introduced. In addition, it also provides interdisciplinary insights into the future of small-diameter prostheses and discusses vital factors and perspectives for developing such prostheses in clinical applications. We propose that the performance of SDVGs can be improved by integrating various technologies in the near future.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"58"},"PeriodicalIF":11.3,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10127667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gi-Yeon Han, Soo-Kyung Hwang, Ki-Hyun Cho, Hyun-Joong Kim, Chong-Su Cho
{"title":"Progress of tissue adhesives based on proteins and synthetic polymers.","authors":"Gi-Yeon Han, Soo-Kyung Hwang, Ki-Hyun Cho, Hyun-Joong Kim, Chong-Su Cho","doi":"10.1186/s40824-023-00397-4","DOIUrl":"https://doi.org/10.1186/s40824-023-00397-4","url":null,"abstract":"<p><p>In recent years, polymer-based tissue adhesives (TAs) have been developed as an alternative to sutures to close and seal incisions or wounds owing to their ease of use, rapid application time, low cost, and minimal tissue damage. Although significant research is being conducted to develop new TAs with improved performances using different strategies, the applications of TAs are limited by several factors, such as weak adhesion strength and poor mechanical properties. Therefore, the next-generation advanced TAs with biomimetic and multifunctional properties should be developed. Herein, we review the requirements, adhesive performances, characteristics, adhesive mechanisms, applications, commercial products, and advantages and disadvantages of proteins- and synthetic polymer-based TAs. Furthermore, future perspectives in the field of TA-based research have been discussed.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"57"},"PeriodicalIF":11.3,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9602630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management.","authors":"Dongjie Zhang, Li Mei, Yuanping Hao, Bingcheng Yi, Jilin Hu, Danyang Wang, Yaodong Zhao, Zhe Wang, Hailin Huang, Yongzhi Xu, Xuyang Deng, Cong Li, Xuewei Li, Qihui Zhou, Yun Lu","doi":"10.1186/s40824-023-00392-9","DOIUrl":"https://doi.org/10.1186/s40824-023-00392-9","url":null,"abstract":"<p><strong>Background: </strong>Clinical tissue adhesives remain some critical drawbacks for managing emergency injuries, such as inadequate adhesive strength and insufficient anti-infection ability. Herein, a novel, self-healing, and antibacterial carboxymethyl chitosan/polyaldehyde dextran (CMCS/PD) hydrogel is designed as the first-aid tissue adhesive for effective trauma emergency management.</p><p><strong>Methods: </strong>We examined the gel-forming time, porosity, self-healing, antibacterial properties, cytotoxicity, adhesive strength, and hemocompatibility. Liver hemorrhage, tail severance, and skin wound infection models of rats are constructed in vivo, respectively.</p><p><strong>Results: </strong>Results demonstrate that the CMCS/PD hydrogel has the rapid gel-forming (~ 5 s), good self-healing, and effective antibacterial abilities, and could adhere to tissue firmly (adhesive strength of ~ 10 kPa and burst pressure of 327.5 mmHg) with excellent hemocompatibility and cytocompatibility. This suggests the great prospect of CMCS/PD hydrogel in acting as a first-aid tissue adhesive for trauma emergency management. The CMCS/PD hydrogel is observed to not only achieve rapid hemostasis for curing liver hemorrhage and tail severance in comparison to commercial hemostatic gel (Surgiflo ®) but also exhibit superior anti-infection for treating acute skin trauma compared with clinical disinfectant gel (Prontosan ®).</p><p><strong>Conclusions: </strong>Overall, the CMCS/PD hydrogel offers a promising candidate for first-aid tissue adhesives to manage the trauma emergency. Because of the rapid gel-forming time, it could also be applied as a liquid first-aid bandage for mini-invasive surgical treatment.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"56"},"PeriodicalIF":11.3,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9578151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arun Kumar Rajendran, Deepthi Sankar, Sivashanmugam Amirthalingam, Hwan D Kim, Jayakumar Rangasamy, Nathaniel S Hwang
{"title":"Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review.","authors":"Arun Kumar Rajendran, Deepthi Sankar, Sivashanmugam Amirthalingam, Hwan D Kim, Jayakumar Rangasamy, Nathaniel S Hwang","doi":"10.1186/s40824-023-00393-8","DOIUrl":"https://doi.org/10.1186/s40824-023-00393-8","url":null,"abstract":"<p><p>Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"55"},"PeriodicalIF":11.3,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gun Hee Cho, Hyun Cheol Bae, Won Young Cho, Eui Man Jeong, Hee Jung Park, Ha Ru Yang, Sun Young Wang, You Jung Kim, Dong Myung Shin, Hyung Min Chung, In Gyu Kim, Hyuk-Soo Han
{"title":"High-glutathione mesenchymal stem cells isolated using the FreSHtracer probe enhance cartilage regeneration in a rabbit chondral defect model.","authors":"Gun Hee Cho, Hyun Cheol Bae, Won Young Cho, Eui Man Jeong, Hee Jung Park, Ha Ru Yang, Sun Young Wang, You Jung Kim, Dong Myung Shin, Hyung Min Chung, In Gyu Kim, Hyuk-Soo Han","doi":"10.1186/s40824-023-00398-3","DOIUrl":"10.1186/s40824-023-00398-3","url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stem cells (MSCs) are a promising cell source for cartilage regeneration. However, the function of MSC can vary according to cell culture conditions, donor age, and heterogeneity of the MSC population, resulting in unregulated MSC quality control. To overcome these limitations, we previously developed a fluorescent real-time thiol tracer (FreSHtracer) that monitors cellular levels of glutathione (GSH), which are known to be closely associated with stem cell function. In this study, we investigated whether using FreSHtracer could selectively separate high-functioning MSCs based on GSH levels and evaluated the chondrogenic potential of MSCs with high GSH levels to repair cartilage defects in vivo.</p><p><strong>Methods: </strong>Flow cytometry was conducted on FreSHtracer-loaded MSCs to select cells according to their GSH levels. To determine the function of FreSHtracer-isolated MSCs, mRNA expression, migration, and CFU assays were conducted. The MSCs underwent chondrogenic differentiation, followed by analysis of chondrogenic-related gene expression. For in vivo assessment, MSCs with different cellular GSH levels or cell culture densities were injected in a rabbit chondral defect model, followed by histological analysis of cartilage-regenerated defect sites.</p><p><strong>Results: </strong>FreSHtracer successfully isolated MSCs according to GSH levels. MSCs with high cellular GSH levels showed enhanced MSC function, including stem cell marker mRNA expression, migration, CFU, and oxidant resistance. Regardless of the stem cell tissue source, FreSHtracer selectively isolated MSCs with high GSH levels and high functionality. The in vitro chondrogenic potential was the highest in pellets generated by MSCs with high GSH levels, with increased ECM formation and chondrogenic marker expression. Furthermore, the MSCs' function was dependent on cell culture conditions, with relatively higher cell culture densities resulting in higher GSH levels. In vivo, improved cartilage repair was achieved by articular injection of MSCs with high levels of cellular GSH and MSCs cultured under high-density conditions, as confirmed by Collagen type 2 IHC, Safranin-O staining and O'Driscoll scores showing that more hyaline cartilage was formed on the defects.</p><p><strong>Conclusion: </strong>FreSHtracer selectively isolates highly functional MSCs that have enhanced in vitro chondrogenesis and in vivo hyaline cartilage regeneration, which can ultimately overcome the current limitations of MSC therapy.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"54"},"PeriodicalIF":11.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9568759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaeeun Bang, Min Gyu Park, In Kyung Cho, Da-Eun Lee, Gye Lim Kim, Eun Hyang Jang, Man Kyu Shim, Hong Yeol Yoon, Sangmin Lee, Jong-Ho Kim
{"title":"Liposomes targeting the cancer cell-exposed receptor, claudin-4, for pancreatic cancer chemotherapy.","authors":"Chaeeun Bang, Min Gyu Park, In Kyung Cho, Da-Eun Lee, Gye Lim Kim, Eun Hyang Jang, Man Kyu Shim, Hong Yeol Yoon, Sangmin Lee, Jong-Ho Kim","doi":"10.1186/s40824-023-00394-7","DOIUrl":"https://doi.org/10.1186/s40824-023-00394-7","url":null,"abstract":"<p><strong>Background: </strong>Claudin-4 (CLDN4), a tight junction protein, is overexpressed in several types of cancer, and is considered a biomarker for cancer-targeted treatment. CLDN4 is not exposed in normal cells, but becomes accessible in cancer cells, in which tight junctions are weakened. Notably, surface-exposed CLDN4 has recently been found to act as a receptor for Clostridium perfringens enterotoxin (CPE) and fragment of CPE (CPE17) that binds to the second domain of CLDN4.</p><p><strong>Methods: </strong>Here, we sought to develop a CPE17-containing liposome that targets pancreatic cancers through binding to exposed CLDN4.</p><p><strong>Results: </strong>Doxorubicin (Dox)-loaded, CPE17-conjugated liposomes (D@C-LPs) preferentially targeted CLDN4-expressing cell lines, as evidenced by greater uptake and cytotoxicity compared with CLDN4-negative cell lines, whereas uptake and cytotoxicity of Dox-loaded liposomes lacking CPE17 (D@LPs) was similar for both CLDN4-positive and negative cell lines. Notably, D@C-LPs showed greater accumulation in targeted pancreatic tumor tissues compared with normal pancreas tissue; in contrast, Dox-loaded liposomes lacking CPE17 (D@LPs) showed little accumulation in pancreatic tumor tissues. Consistent with this, D@C-LPs showed greater anticancer efficacy compared with other liposome formulations and significantly extended survival.</p><p><strong>Conclusions: </strong>We expect our findings will aid in the prevention and treatment of pancreatic cancer and provide a framework for identifying cancer-specific strategies that target exposed receptors.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"53"},"PeriodicalIF":11.3,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9538921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyung Shik Kim, Seok Chan Park, Hae Jin Kim, Dong Yun Lee
{"title":"Inhibition of DAMP actions in the tumoral microenvironment using lactoferrin-glycyrrhizin conjugate for glioblastoma therapy.","authors":"Hyung Shik Kim, Seok Chan Park, Hae Jin Kim, Dong Yun Lee","doi":"10.1186/s40824-023-00391-w","DOIUrl":"https://doi.org/10.1186/s40824-023-00391-w","url":null,"abstract":"<p><strong>Background: </strong>High-mobility group box-1 (HMGB1) released from the tumor microenvironment plays a pivotal role in the tumor progression. HMGB1 serves as a damaged-associated molecular pattern (DAMP) that induces tumor angiogenesis and its development. Glycyrrhizin (GL) is an effective intracellular antagonist of tumor released HMGB1, but its pharmacokinetics (PK) and delivery to tumor site is deficient. To address this shortcoming, we developed lactoferrin-glycyrrhizin (Lf-GL) conjugate.</p><p><strong>Methods: </strong>Biomolecular interaction between Lf-GL and HMGB1 was evaluated by surface plasmon resonance (SPR) binding affinity assay. Inhibition of tumor angiogenesis and development by Lf-GL attenuating HMGB1 action in the tumor microenvironment was comprehensively evaluated through in vitro, ex vivo, and in vivo. Pharmacokinetic study and anti-tumor effects of Lf-GL were investigated in orthotopic glioblastoma mice model.</p><p><strong>Results: </strong>Lf-GL interacts with lactoferrin receptor (LfR) expressed on BBB and GBM, therefore, efficiently inhibits HMGB1 in both the cytoplasmic and extracellular regions of tumors. Regarding the tumor microenvironment, Lf-GL inhibits angiogenesis and tumor growth by blocking HMGB1 released from necrotic tumors and preventing recruitment of vascular endothelial cells. In addition, Lf-GL improved the PK properties of GL approximately tenfold in the GBM mouse model and reduced tumor growth by 32%. Concurrently, various biomarkers for tumor were radically diminished.</p><p><strong>Conclusion: </strong>Collectively, our study demonstrates a close association between HMGB1 and tumor progression, suggesting Lf-GL as a potential strategy for coping with DAMP-related tumor microenvironment. HMGB1 is a tumor-promoting DAMP in the tumor microenvironment. The high binding capability of Lf-GL to HMGB1 inhibits tumor progression cascade such as tumor angiogenesis, development, and metastasis. Lf-GL targets GBM through interaction with LfR and allows to arrest HMGB1 released from the tumor microenvironment. Therefore, Lf-GL can be a GBM treatment by modulating HMGB1 activity.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"52"},"PeriodicalIF":11.3,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10200060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9502251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regenerated silk fibroin based on small aperture scaffolds and marginal sealing hydrogel for osteochondral defect repair.","authors":"Yinyue Luo, Menglin Xiao, Bushra Sufyan Almaqrami, Hong Kang, Zhengzhong Shao, Xin Chen, Ying Zhang","doi":"10.1186/s40824-023-00370-1","DOIUrl":"https://doi.org/10.1186/s40824-023-00370-1","url":null,"abstract":"<p><strong>Background: </strong>Osteochondral defects pose an enormous challenge without satisfactory repair strategy to date. In particular, the lateral integration of neo-cartilage into the surrounding native cartilage is a difficult and inadequately addressed problem determining tissue repair's success.</p><p><strong>Methods: </strong>Regenerated silk fibroin (RSF) based on small aperture scaffolds was prepared with n-butanol innovatively. Then, the rabbit knee chondrocytes and bone mesenchymal stem cells (BMSCs) were cultured on RSF scaffolds, and after induction of chondrogenic differentiation, cell-scaffold complexes strengthened by a 14 wt% RSF solution were prepared for in vivo experiments.</p><p><strong>Results: </strong>A porous scaffold and an RSF sealant exhibiting biocompatibility and excellent adhesive properties are developed and confirmed to promote chondrocyte migration and differentiation. Thus, osteochondral repair and superior horizontal integration are achieved in vivo with this composite.</p><p><strong>Conclusions: </strong>Overall, the new approach of marginal sealing around the RSF scaffolds exhibits preeminent repair results, confirming the ability of this novel graft to facilitate simultaneous regeneration of cartilage-subchondral bone.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"50"},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9497528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jung Hwan Park, Ju-Ro Lee, Sungkwon Park, Yu-Jin Kim, Jeong-Kee Yoon, Hyun Su Park, Jiyu Hyun, Yoon Ki Joung, Tae Il Lee, Suk Ho Bhang
{"title":"Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition.","authors":"Jung Hwan Park, Ju-Ro Lee, Sungkwon Park, Yu-Jin Kim, Jeong-Kee Yoon, Hyun Su Park, Jiyu Hyun, Yoon Ki Joung, Tae Il Lee, Suk Ho Bhang","doi":"10.1186/s40824-023-00383-w","DOIUrl":"https://doi.org/10.1186/s40824-023-00383-w","url":null,"abstract":"<p><strong>Background: </strong>Recently, various studies have revealed that 3D cell spheroids have several advantages over 2D cells in stem cell culture. However, conventional 3D spheroid culture methods have some disadvantages and limitations such as time required for spheroid formation and complexity of the experimental process. Here, we used acoustic levitation as cell culture platform to overcome the limitation of conventional 3D culture methods.</p><p><strong>Methods: </strong>In our anti-gravity bioreactor, continuous standing sonic waves created pressure field for 3D culture of human mesenchymal stem cells (hMSCs). hMSCs were trapped and aggerated in pressure field and consequently formed spheroids. The structure, viability, gene and protein expression of spheroids formed in the anti-gravity bioreactor were analyzed by electron microscope, immunostaining, polymerase chain reaction, and western blot. We injected hMSC spheroids fabricated by anti-gravity bioreactor into the mouse hindlimb ischemia model. Limb salvage was quantified to evaluate therapeutic efficacy of hMSC spheroids.</p><p><strong>Results: </strong>The acoustic levitation in anti-gravity bioreactor made spheroids faster and more compact compared to the conventional hanging drop method, which resulted in the upregulation of angiogenic paracrine factors of hMSCs, such as vascular endothelial growth factor and angiopoietin 2. Injected hMSCs spheroids cultured in the anti-gravity bioreactor exhibited improved therapeutic efficacy, including the degree of limb salvage, capillary formation, and attenuation of fibrosis and inflammation, for mouse hindlimb ischemia model compared to spheroids formed by the conventional hanging drop method.</p><p><strong>Conclusion: </strong>Our stem cell culture system using acoustic levitation will be proposed as a new platform for the future 3D cell culture system.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"51"},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9500333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiachen Shi, Qiuling Ma, Wenting Su, Congyan Liu, Huangqin Zhang, Yuping Liu, Xiaoqi Li, Xi Jiang, Chang Ge, Fei Kong, Yan Chen, Ding Qu
{"title":"Effervescent cannabidiol solid dispersion-doped dissolving microneedles for boosted melanoma therapy via the \"TRPV1-NFATc1-ATF3\" pathway and tumor microenvironment engineering.","authors":"Jiachen Shi, Qiuling Ma, Wenting Su, Congyan Liu, Huangqin Zhang, Yuping Liu, Xiaoqi Li, Xi Jiang, Chang Ge, Fei Kong, Yan Chen, Ding Qu","doi":"10.1186/s40824-023-00390-x","DOIUrl":"https://doi.org/10.1186/s40824-023-00390-x","url":null,"abstract":"<p><strong>Background: </strong>Conventional dissolving microneedles (DMNs) face significant challenges in anti-melanoma therapy due to the lack of active thrust to achieve efficient transdermal drug delivery and intra-tumoral penetration.</p><p><strong>Methods: </strong>In this study, the effervescent cannabidiol solid dispersion-doped dissolving microneedles (Ef/CBD-SD@DMNs) composed of the combined effervescent components (CaCO<sub>3</sub> & NaHCO<sub>3</sub>) and CBD-based solid dispersion (CBD-SD) were facilely fabricated by the \"one-step micro-molding\" method for boosted transdermal and tumoral delivery of cannabidiol (CBD).</p><p><strong>Results: </strong>Upon pressing into the skin, Ef/CBD-SD@DMNs rapidly produce CO<sub>2</sub> bubbles through proton elimination, significantly enhancing the skin permeation and tumoral penetration of CBD. Once reaching the tumors, Ef/CBD-SD@DMNs can activate transient receptor potential vanilloid 1 (TRPV1) to increase Ca<sup>2+</sup> influx and inhibit the downstream NFATc1-ATF3 signal to induce cell apoptosis. Additionally, Ef/CBD-SD@DMNs raise intra-tumoral pH environment to trigger the engineering of the tumor microenvironment (TME), including the M1 polarization of tumor-associated macrophages (TAMs) and increase of T cells infiltration. The introduction of Ca<sup>2+</sup> can not only amplify the effervescent effect but also provide sufficient Ca<sup>2+</sup> with CBD to potentiate the anti-melanoma efficacy. Such a \"one stone, two birds\" strategy combines the advantages of effervescent effects on transdermal delivery and TME regulation, creating favorable therapeutic conditions for CBD to obtain stronger inhibition of melanoma growth in vitro and in vivo.</p><p><strong>Conclusions: </strong>This study holds promising potential in the transdermal delivery of CBD for melanoma therapy and offers a facile tool for transdermal therapies of skin tumors.</p>","PeriodicalId":9079,"journal":{"name":"Biomaterials Research","volume":"27 1","pages":"48"},"PeriodicalIF":11.3,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9825183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}