Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)最新文献
{"title":"Scaling, entanglement, and quantum phase transitions","authors":"A. Osterloh, L. Amico, G. Falci, R. Fazio","doi":"10.1117/12.517861","DOIUrl":"https://doi.org/10.1117/12.517861","url":null,"abstract":"In this paper we discuss the entanglement near a quantum phase transition by analyzing the properties of the concurrence for a class of exactly solvable models in one dimenion. Entanglement can be classified in the framework of the scaling theory of phase transition. There is a profound difference between the classical correlations, whose correlation length diverges at the phase transiton, and non-local quantum correlations that remain, in general, short ranged.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88423850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resonant-tunneling solid state NMR quantum computer","authors":"A. V. Tsukanov, A. A. Larionov, K. Valiev","doi":"10.1117/12.517897","DOIUrl":"https://doi.org/10.1117/12.517897","url":null,"abstract":"A novel solid state quantum comptuer is discussed. Nuclear spins-qubits are the basic elements of quantum register, while single electron resonant transfer is used to obtain complex many-qubit gates. The electron's quantum dynamics analyiss shows the possibility of individual addressing in large registers. Planar and ensemble architectures are also proposed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88650567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight into fundamental problems of quantum information in physics","authors":"B. Grishanin, V. Zadkov","doi":"10.1117/12.517865","DOIUrl":"https://doi.org/10.1117/12.517865","url":null,"abstract":"The main quantum information measures are discussed with respect to their relation to physics. It is argued that the basic term to choose betweenthe possible ways to measure quantum information is compatibility/incompatibility of the quantum states, resulting in coherent information and here suggested compatible information measures. A sketch of information optimization of a quantum experimental setup is proposed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84336567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Belokurov, O. Khrustalev, V. Sadovnichy, O. D. Timofeevskaya
{"title":"Conditional density matrix: subsystems in quantum communication","authors":"V. Belokurov, O. Khrustalev, V. Sadovnichy, O. D. Timofeevskaya","doi":"10.1117/12.517875","DOIUrl":"https://doi.org/10.1117/12.517875","url":null,"abstract":"A new quantum mechanical notion - Conditional Density Matrix - proposed by the authors, is discussed and is applied to describe some physical processes. This notion is a natural generalization of von Neumann density matrix for such processes as divisions of quantum systems into subsystems and reunifications of subsystems into new joint systems. Conditional Density Matrix assigns a quantum state to a subsystem of a composite system under condition that another part of the composition system is in some pure state. It is shown that conditional density matrix naturally arises by expanding of reduced density matrix.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88010228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modification of error reconciliation scheme for quantum cryptography","authors":"Konstantin Kuritsyn","doi":"10.1117/12.517879","DOIUrl":"https://doi.org/10.1117/12.517879","url":null,"abstract":"Quantum cryptography is essentially the quantum key distribution (QKD). In the context of QKD, one from two partners (Alice) generates and sends a sequence of qubits through a private quantum channel to another partner (Bob) and Bob receives the sequence and measures the state of each qubit. After the quantum transmission stage, Alice and Bob have almost identical qubit sequences. The erros are due to physical imperfections in the channel and presence of an eavesdropper. The next stage in QKD is key reconciliation (i.e. finding and correcting discrepancies between Alice's string and that of Bob). This reconciliation can be done by public discussion. Let us suppose there is a secret quantum channel between Alice and Bob through which Alice transmits a n-bit string A=(A1, A2,...,An)ε{0,1}n. Then Bob receives a n-bit string B=(B1, B2,...,Bn)ε{0,1)n. The string B differs from A due to the presence of noise and eavesdropper in the channel. One can estimate the bit error probability in the channel. For example, Bob can choose a random subset from his string and send it to Alice in public. Then Alice compares the received string with her corresponding subset and calculates the total number of protocol steps. The cascade scheme uses the interaction over the public channel to correct the secret strings by dividing them into the blocks of a fixed length. The length is determined from the bit error probability. A simple interactive routine is applied in each of these blocks. An error found in some block results in some action with other blocks. It is important to optimize the error-finding routines in standalone blocks as well as to organize the effective constrution of blocks with the object of protocol benchmark, information leakage and number of interactions between partners.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72696023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Prokhorov, A. Y. Leksin, A. Alodjants, S. Arakelian
{"title":"Quantum computations in nonlinear tunnelly coupled distributed feedback systems","authors":"A. Prokhorov, A. Y. Leksin, A. Alodjants, S. Arakelian","doi":"10.1117/12.517899","DOIUrl":"https://doi.org/10.1117/12.517899","url":null,"abstract":"The processes of four-photon interactin in optical distributed feedback ssytems have been considerd. The conditions for using such systems as the base of quantum logic gates realization are clarified taking into account different energy exchange processes between interacting modes.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85494612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimal sets of conditions for distinguishing among separable and entangled states of multiqubit systems","authors":"P. Jorrand, M. Mhalla","doi":"10.1117/12.517906","DOIUrl":"https://doi.org/10.1117/12.517906","url":null,"abstract":"A state ψ = α/00] + β/01] + γ/10] +δ/11] of a system of two qubits is separable if the equality among pair-wise products αδ = βγ holds. This paper generalize this form of condition for distinguishing among separable and entangled states of systems of n qubits. Given a pure state /ψN] of a quantum system composed of n qubits, where N = 2n, this paper defines minimal sets of equalities among pair-wise products of amplitudes of /ψN] for characterizing two forms of separability of /ψN]: (i) into a tensor product of n qubit states /ψ2]0 x/ψ2]1 x...x/ψ2]n-1, and (ii), into a tensor product of 2 subsystems states /ψp]x/ψQ] with P=2p and Q=2q such that p+q=n.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85615009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational complexity of classical and quantum dynamics","authors":"I. B. Ivanov","doi":"10.1117/12.517854","DOIUrl":"https://doi.org/10.1117/12.517854","url":null,"abstract":"A concept of computational complexity is applied for analysis of classical and quantum dynamical systems. It is argued that evolution of wave functions in nonintegrable quatnum systems lies in complexity class EXP because of rapid growth of number of elementary computational operations needed to predict their future. On the other hand, evolution of wave functions in integrable systems can be predicted by the fast algorithms and thus it belongs to P class. This difference between integrable and nonintegrable systems in our approahc looks identically for classical and quantum systems. In this paper an informational approach is applied for analysis of dynamics in classical and quantum systems to find a universal different between integrable and nonintegrable motion. As a basic tool to analyze compleixty of dynamics we use a number of elementary computational operations O(T) (computational complexity) needed to determine a state of a sytem for time interval T.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89096825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum computer on InAs/GaSb heterostructures","authors":"A. Zakharova, S. Yen, K. Chao","doi":"10.1117/12.517922","DOIUrl":"https://doi.org/10.1117/12.517922","url":null,"abstract":"The InAs/AlGaSb heterostructures are promising candidates for fabricating the quantum computer due to the large electron g-factor in the bulk InAs and hence large spin splitting of electron-like Landau levels in a quantizing magnetic field. The two lowest electron-like spin levesl can be used as a qubit of a quantum computer. Then the one-qubit operations can be performed by the circulary polarized light of photon energy approximately equal to the spin splitting of levels. These transitions rae possible because of the mixing of the states of different spin orientations caused by the spin-orbit interaction. Previously it has been found that the additional AlGaSb layer can essentially enhance the spin splitting of electron-like levels when the magnetic field is normal to the InAs/AlGaSb interface due to the hybridization of electron and hole levels. Here we investigate the Landau-level structures in strained InAs/GaSb heterostructures using the scattering matrix method and Burt's envelope function theory. We obtain somewhat different results. The spin splitting of electron-like Landau levels considerably enlarges when the hybridization of electron and hole levels becomes negligibly small with the magnetic field increasing. We find that this splitting depends essentially on the lattice-mismatched strain and can be as large as 15 meV at magnetic field B ≥ 15 T for the structure grown on InAs.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74577589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perspectives of particle-optical systems in quantum computing","authors":"V. A. Zhukov, M. M. Nesterov","doi":"10.1117/12.517867","DOIUrl":"https://doi.org/10.1117/12.517867","url":null,"abstract":"There is investigated theoretical possibility to make quantum computer elements by means of Ion Lithography with resolution of details about 2 nm. The axisymmetrical combined immersion lenses of three types are investigated for this aim in a whole range of working regimes from the edge of pure electrostatic regime to the edge of combined mirror regime. Simple analytical approximations are derived for four main ion-optical parameters of combined lenses: focal length f, coefficient of chromatic aberration Cd, coefficient of spherical aberration of the third order Cs, and Amper-turns in the magnetic coil of combined lens NI. These parameters are expressed in form of functions of dimensionless quantity (formula available in paper) is the energy of ions at the lithographic target and W0 is the initial energy of ions. It is shown that axial aberrations of combined lenses (Cc and Cs) and focal length f have a maximum under absence of magnetic field (when lenses are pure electrostatic). It is shown that under ττ yeilds 0 parameters Cc, Cs, f and NI, as functions of quantity τ, take forms: Cc~τ1/6, Cs~τ1/4, f~τ1/3, NI~τ(-1/2). It is shown also that the Ion Lithographic image (by using heavy ions in non-resist regime) could have 2*1012 pixels under resoltuion 2nm in the frame 3×3mm2.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84321966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}