经典和量子动力学的计算复杂性

I. B. Ivanov
{"title":"经典和量子动力学的计算复杂性","authors":"I. B. Ivanov","doi":"10.1117/12.517854","DOIUrl":null,"url":null,"abstract":"A concept of computational complexity is applied for analysis of classical and quantum dynamical systems. It is argued that evolution of wave functions in nonintegrable quatnum systems lies in complexity class EXP because of rapid growth of number of elementary computational operations needed to predict their future. On the other hand, evolution of wave functions in integrable systems can be predicted by the fast algorithms and thus it belongs to P class. This difference between integrable and nonintegrable systems in our approahc looks identically for classical and quantum systems. In this paper an informational approach is applied for analysis of dynamics in classical and quantum systems to find a universal different between integrable and nonintegrable motion. As a basic tool to analyze compleixty of dynamics we use a number of elementary computational operations O(T) (computational complexity) needed to determine a state of a sytem for time interval T.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2003-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational complexity of classical and quantum dynamics\",\"authors\":\"I. B. Ivanov\",\"doi\":\"10.1117/12.517854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A concept of computational complexity is applied for analysis of classical and quantum dynamical systems. It is argued that evolution of wave functions in nonintegrable quatnum systems lies in complexity class EXP because of rapid growth of number of elementary computational operations needed to predict their future. On the other hand, evolution of wave functions in integrable systems can be predicted by the fast algorithms and thus it belongs to P class. This difference between integrable and nonintegrable systems in our approahc looks identically for classical and quantum systems. In this paper an informational approach is applied for analysis of dynamics in classical and quantum systems to find a universal different between integrable and nonintegrable motion. As a basic tool to analyze compleixty of dynamics we use a number of elementary computational operations O(T) (computational complexity) needed to determine a state of a sytem for time interval T.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.517854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.517854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算复杂性的概念被应用于经典和量子动力系统的分析。本文认为,由于预测不可积量子系统的未来所需的基本计算操作数量的快速增长,波函数在不可积量子系统中的演化存在于复杂性类EXP。另一方面,可积系统中波函数的演化可以用快速算法预测,因此属于P类。在我们的方法中,可积系统和不可积系统之间的区别对于经典系统和量子系统来说是相同的。本文应用信息学方法对经典系统和量子系统的动力学进行分析,找出可积运动和不可积运动之间的普遍区别。作为分析动力学复杂性的基本工具,我们使用一些基本计算操作O(T)(计算复杂度)来确定时间间隔T下系统的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational complexity of classical and quantum dynamics
A concept of computational complexity is applied for analysis of classical and quantum dynamical systems. It is argued that evolution of wave functions in nonintegrable quatnum systems lies in complexity class EXP because of rapid growth of number of elementary computational operations needed to predict their future. On the other hand, evolution of wave functions in integrable systems can be predicted by the fast algorithms and thus it belongs to P class. This difference between integrable and nonintegrable systems in our approahc looks identically for classical and quantum systems. In this paper an informational approach is applied for analysis of dynamics in classical and quantum systems to find a universal different between integrable and nonintegrable motion. As a basic tool to analyze compleixty of dynamics we use a number of elementary computational operations O(T) (computational complexity) needed to determine a state of a sytem for time interval T.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信