{"title":"General Info: Materials Chemistry and Physics (Materials Chemistry 2020) – International e-Conference","authors":"","doi":"10.33263/proceedings22.001002","DOIUrl":"https://doi.org/10.33263/proceedings22.001002","url":null,"abstract":"Advances in Materials, Physics, and Chemistry Science (Materials Chemistry 2020) is an international conference that aims to bring together scientists, researchers and industrialists from all over the world on a common platform to discuss and share recent advances in Materials, Chemistry, and Physics. Materials Chemistry 2020 aims to bring together scientists, researchers, and practitioners in order to discuss and share cutting-edge development in the field. Materials Chemistry 2020 provides an ideal platform and opportunity for all the young researchers to connect with eminent Scientists and Industrialists. The Conference is a premier enlightening and networking for all industry stakeholders, policy makers, investors, industry and research community to exchange experiences and challenges related to development and scaling up in the field of Materials Science physics and chemistry.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78211600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why is Soft (Green) Processing (= Low-Energy Production) of Advanced Nano-Materials Difficult but Necessary for Sustainable Society?","authors":"","doi":"10.33263/proceedings22.009010","DOIUrl":"https://doi.org/10.33263/proceedings22.009010","url":null,"abstract":"Modern our society has been developed with various advanced nano-materials. Most of the advanced materials, Metallurgical materials, Semiconductors, Ceramic materials, and Plastics have been used in a wide area of applications like structural, mechanical, chemical, electrical, electronic, optical, photonic, biological, medical, etc. Most of them, except for bio-polymers & bio-minerals, have never been produced via biological systems. Thus they have generally been fabricated artificially and/or industrially by so-called high-technology, where harsh conditions & high energy species like high temperature, high pressure, vacuum, molecule, atom, ion, plasma, etc. have been used for their fabrications, thus consumed a huge amount of resources and energies then exhausted huge amounts of wastes: materials, heats, and entropy. To save this tragedy, we must consider “Cascade use of Heats” and “Low energy Production of advanced nano-materials via water-based processings.” Bio-inspired process, which means that “Learn from Bio-systems then Exceed them”. We have challenged to fabricate those advanced inorganic materials with the desired shape/size/location, etc. directly in low energetic routes using aqueous solutions since 1989 when we found a method to fabricate BaTiO3 film on Ti substrate in a Ba(OH)2 solution by Hydrothermal Electrochemical[HEC] method at low temperatures of 60-200 C. We proposed in 1995 an innovative concept and technology, “Soft Processing” or “Soft Solution Processing,” which aims low energetic (=environmentally friendly) fabrication of shaped, sized, located, and oriented inorganic materials in/from solutions1,2). It can be regarded as green processing or eco-processing. When we have activated/stimulated interfacial reactions locally and/or moved the reaction point dynamically, we can get patterned ceramic films directly in solution without any firing, masking, nor etching—direct Patterning of CdS, PbS, and CaWO4 on papers by Ink-Jet Reaction method. Furthermore, we have succeeded in fabricating BaTiO3 patterns on Ti by a laser beam scanning3) and carbon patterns on Si by plasma using a needle electrode scanning directly in solutions. Successes in TiO2 and CeO2 patterns by Ink-Jet Deposition, where nano-particles are nucleated and grown successively on the surface of the substrate, thus become dense even below 300 oC will be presented. Nano-structured films will also be talked. .A recent novel subject, Soft Processing for various nano-carbons including graphene and functionalized graphene will be introduced. Where we have succeeded to prepare functionalized Graphene Ink via successive processes under ambient temperature and pressure conditions.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81988460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Account on Functionalization of Materials: Influence on the Performance Evaluation of Solid State Devices","authors":"","doi":"10.33263/proceedings22.016016","DOIUrl":"https://doi.org/10.33263/proceedings22.016016","url":null,"abstract":"The power sector is one of the major constituents of a country’s infrastructure. In this context, solid-state devices based on fuel cells have gained significant interest owing to their variable fuel usage, better performance evaluation, and tailored long-term endurance. In such an aspect, the primary role is employed by the materials viz. electrode and electrolyte irrespective of the operating temperature. \u0000An account will be provided by the speaker on the correlation among tailoring the properties of the electrode through functionalization during synthesis and performance evaluation of the solid-state devices. Research work on functional anode materials applicable to high temperature fuel cells will be discussed. Functionalization of Ni-yttria stabilized zirconia composite through particulate deposition technique enables the formation of unique Ni@SZ microstructure, thereby resulting in a high current density of 3.7 A.cm-2 at 800oC for coupon cell(16-23 mm) with high endurance for 2000 hrs. Penetration depth analysis of such cermet has been carried out successfully as a function of Ni content. The effectivity of such anodes will also be discussed with multiple fuels. For low-temperature applications, polymer-based electrolytes are employed. Functional poly (ethylene oxide) based electrolyte with optimized compositions are reported to significantly enhance the performance with even better long term tenability.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82890879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joining of Stainless Steel with Novel Filler Material and its\u0000Weldability Studies","authors":"","doi":"10.33263/proceedings22.018019","DOIUrl":"https://doi.org/10.33263/proceedings22.018019","url":null,"abstract":"Welding of Austenitic Stainless steels results in the emission of hexavalent chromium [Cr+6] fumes due to the presence of 18-22% chromium content in the stainless steel base and its filler materials. These hexavalent fumes are carcinogenic and cause respiratory problems to the welders and personnel in the vicinity of welding. In the present research work, novel Chromium free Nickel-based filler material of % wt composition 41 Ni, 8 Co, 16 Fe, 14Mo, 7 Mn, 8 Cu, 3 Nb, 1 Ti, 1 Si, 1 Al is developed and its weldability with stainless steel is studied. The microstructure and chemical composition of different metallurgical phases in the filler material and weld joints are studied using different microscopy tools and X-Ray Diffraction, respectively. The ultimate tensile strength of the filler material and weld joint welded by developed filler material is found to be 536MPa and 487 MPa, respectively. The average hardness and toughness of the filler material and welded joint are 190VHN &110J and 209VHN & 89 VHN, respectively. Results of Potentio-dynamic polarization and Inter Granular corrosion cracking (IGCC) of the weld joint has shown the corrosion rate of 1.575e-004 mils/year and 354.56 miles/year, respectively. Mechanical properties and corrosion rate of weldments welded by novel filler material are compared with that of conventional filler material. Design of experiments(DOE) using Taguchi L9 array is formulated to understand the influence of Welding current, root gap, and gas flow rate on output parameters such as Tensile Strength, Toughness, and corrosion resistance of weldment. DOE using RSM has shown maximum Tensile strength of 487Mpa, maximum Hardness of 209 VHN, and a minimum corrosion rate of 1.575e-004 mils/year has obtained with an optimum current value of 130A, 11.79 litres/min gas flow rate, and 2.33mm root gap.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85929249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}