表面工程SPIONS增强水中染料脱除效能的生产与应用

{"title":"表面工程SPIONS增强水中染料脱除效能的生产与应用","authors":"","doi":"10.33263/proceedings21.020020","DOIUrl":null,"url":null,"abstract":"SPIONs, being the only metal oxide nanoparticles clinically approved, have shown a great promise in the various clinical applications, including environmental remediation, specifically water treatment. In this study, SPIONs are produced by the chemical co-precipitation method used for dye removal studies, where isotherm kinetics were studied. In conclusion, it was shown that both naked and coated SPIONs successfully demonstrated the removal of crystal violet from the water, thereby enabling to apply SPIONs for the treatment of contaminated water with textile dyes.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production and Utilization of Surface Engineered SPIONS for Enhanced Removal of Dye from Water\",\"authors\":\"\",\"doi\":\"10.33263/proceedings21.020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SPIONs, being the only metal oxide nanoparticles clinically approved, have shown a great promise in the various clinical applications, including environmental remediation, specifically water treatment. In this study, SPIONs are produced by the chemical co-precipitation method used for dye removal studies, where isotherm kinetics were studied. In conclusion, it was shown that both naked and coated SPIONs successfully demonstrated the removal of crystal violet from the water, thereby enabling to apply SPIONs for the treatment of contaminated water with textile dyes.\",\"PeriodicalId\":90703,\"journal\":{\"name\":\"Proceedings. International Meshing Roundtable\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Meshing Roundtable\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/proceedings21.020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Meshing Roundtable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/proceedings21.020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

SPIONs作为临床唯一批准的金属氧化物纳米颗粒,在各种临床应用中显示出巨大的前景,包括环境修复,特别是水处理。在本研究中,SPIONs是通过化学共沉淀法产生的,该方法用于染料去除研究,并研究了等温动力学。综上所述,裸态和包覆态SPIONs都成功地证明了从水中去除结晶紫,从而使SPIONs能够用于处理受纺织染料污染的水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production and Utilization of Surface Engineered SPIONS for Enhanced Removal of Dye from Water
SPIONs, being the only metal oxide nanoparticles clinically approved, have shown a great promise in the various clinical applications, including environmental remediation, specifically water treatment. In this study, SPIONs are produced by the chemical co-precipitation method used for dye removal studies, where isotherm kinetics were studied. In conclusion, it was shown that both naked and coated SPIONs successfully demonstrated the removal of crystal violet from the water, thereby enabling to apply SPIONs for the treatment of contaminated water with textile dyes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信