Brain最新文献

筛选
英文 中文
The role of neuronal variability in cognitive modulation via prefrontal direct current stimulation 神经元变异性在前额叶直流电刺激认知调节中的作用
IF 14.5 1区 医学
Brain Pub Date : 2024-09-26 DOI: 10.1093/brain/awae307
Jeremy Hogeveen
{"title":"The role of neuronal variability in cognitive modulation via prefrontal direct current stimulation","authors":"Jeremy Hogeveen","doi":"10.1093/brain/awae307","DOIUrl":"https://doi.org/10.1093/brain/awae307","url":null,"abstract":"This scientific commentary refers to ‘Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing’ by Fehring et al. (https://doi.org/10.1093/brain/awae273).","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons. PTEN 控制原发性神经元中自闭症谱系障碍相关转录本的替代剪接。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-26 DOI: 10.1093/brain/awae306
Sebastian Rademacher,Marco Preußner,Marie C Rehm,Joachim Fuchs,Florian Heyd,Britta J Eickholt
{"title":"PTEN controls alternative splicing of autism spectrum disorder-associated transcripts in primary neurons.","authors":"Sebastian Rademacher,Marco Preußner,Marie C Rehm,Joachim Fuchs,Florian Heyd,Britta J Eickholt","doi":"10.1093/brain/awae306","DOIUrl":"https://doi.org/10.1093/brain/awae306","url":null,"abstract":"Phosphatase and tensin homologue (PTEN) is the main antagonist of the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signalling pathway and mutated in 10-20% of individuals with autism spectrum disorder (ASD) exhibiting macrocephaly. Hyperactive mTOR signalling is responsible for some aspects during PTEN-ASD progression, e.g. neuronal hypertrophy and -excitability, but PI3K/mTOR-independent processes have additionally been described. There is emerging evidence that PTEN regulates gene transcription, spliceosome formation and pre-mRNA splicing independently of PI3K/mTOR. Altered splicing is a hallmark of brains from individuals with idiopathic and PTEN-ASD, however, molecular mechanisms are yet to be identified. We performed RNA-Seq followed by analysis of altered transcript splicing in Pten-deficient primary cortical mouse neurons, which we compared with published data from PTEN-deficient human neuronal stem cells. This analysis identified that transcripts were globally mis-spliced in a developmentally regulated fashion and cluster in synaptic and gene expression regulatory processes. Strikingly, splicing defects following Pten-deficiency represent a significant number of other known ASD-susceptibility genes. Furthermore, we show that exons with strong 3' splice sites are more frequently mis-spliced under Pten-deficient conditions. Our study indicates that PTEN-ASD is a multifactorial condition involving the dysregulation of other known ASD-susceptibility genes.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma metabolomic signature of healthy lifestyle, structural brain reserve and risk of dementia 健康生活方式、大脑结构储备和痴呆症风险的血浆代谢组特征
IF 14.5 1区 医学
Brain Pub Date : 2024-09-26 DOI: 10.1093/brain/awae257
Fei Tian, Yuhua Wang, Zhengmin (Min) Qian, Shanshan Ran, Zilong Zhang, Chongjian Wang, Stephen Edward McMillin, Niraj R Chavan, Hualiang Lin
{"title":"Plasma metabolomic signature of healthy lifestyle, structural brain reserve and risk of dementia","authors":"Fei Tian, Yuhua Wang, Zhengmin (Min) Qian, Shanshan Ran, Zilong Zhang, Chongjian Wang, Stephen Edward McMillin, Niraj R Chavan, Hualiang Lin","doi":"10.1093/brain/awae257","DOIUrl":"https://doi.org/10.1093/brain/awae257","url":null,"abstract":"Although the association between healthy lifestyle and dementia risk has been documented, the relationship between a metabolic signature indicative of healthy lifestyle and dementia risk and the mediating role of structural brain impairment remain unknown. We retrieved 136 628 dementia-free participants from UK Biobank. Elastic net regression was used to obtain a metabolic signature that represented lifestyle behaviours. Cox proportional hazard models were fitted to explore the associations of lifestyle-associated metabolic signature with incident dementia. Causal associations between identified metabolites and dementia were investigated using Mendelian randomization. Mediation analysis was also conducted to uncover the potential mechanisms involving 19 imaging-derived phenotypes (brain volume, grey matter volume, white matter volume and regional grey matter volumes). During a follow-up of 12.55 years, 1783 incident cases of all-cause dementia were identified, including 725 cases of Alzheimer's dementia and 418 cases of vascular dementia. We identified 83 metabolites that could represent healthy lifestyle behaviours using elastic net regression. The metabolic signature was associated with a lower dementia risk, and for each standard deviation increment in metabolic signature, the hazard ratio was 0.89 [95% confidence interval (CI): 0.85, 0.93] for all-cause dementia, 0.95 (95% CI: 0.88, 1.03) for Alzheimer's dementia and 0.84 (95% CI: 0.77, 0.91) for vascular dementia. Mendelian randomization revealed potential causal associations between the identified metabolites and risk of dementia. In addition, the specific structural brain reserve, including the hippocampus, grey matter in the hippocampus, parahippocampal gyrus and middle temporal gyrus, were detected to mediate the effects of metabolic signature on dementia risk (mediated proportion ranging from 6.21% to 11.98%). The metabolic signature associated with a healthy lifestyle is inversely associated with dementia risk, and greater structural brain reserve plays an important role in mediating this relationship. These findings have significant implications for understanding the intricate connections between lifestyle, metabolism and brain health.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BCAS1-positive oligodendrocytes enable efficient cortical remyelination in multiple sclerosis. BCAS1 阳性的少突胶质细胞能使多发性硬化症患者的皮质髓鞘有效再形成。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-25 DOI: 10.1093/brain/awae293
Caroline Gertrud Bergner,Franziska van der Meer,Jonas Franz,Aigli Vakrakou,Thea Würfel,Stefan Nessler,Lisa Schäfer,Cora Nau-Gietz,Anne Winkler,Nielsen Lagumersindez-Denis,Claudia Wrzos,Ioanna Alkmini Damkou,Christina Sergiou,Verena Schultz,Carolin Knauer,Imke Metz,Erik Bahn,Enrique Garea Rodriguez,Doron Merkler,Mikael Simons,Christine Stadelmann
{"title":"BCAS1-positive oligodendrocytes enable efficient cortical remyelination in multiple sclerosis.","authors":"Caroline Gertrud Bergner,Franziska van der Meer,Jonas Franz,Aigli Vakrakou,Thea Würfel,Stefan Nessler,Lisa Schäfer,Cora Nau-Gietz,Anne Winkler,Nielsen Lagumersindez-Denis,Claudia Wrzos,Ioanna Alkmini Damkou,Christina Sergiou,Verena Schultz,Carolin Knauer,Imke Metz,Erik Bahn,Enrique Garea Rodriguez,Doron Merkler,Mikael Simons,Christine Stadelmann","doi":"10.1093/brain/awae293","DOIUrl":"https://doi.org/10.1093/brain/awae293","url":null,"abstract":"Remyelination is a crucial regenerative process in demyelinating diseases, limiting persisting damage to the central nervous system (CNS). It restores saltatory nerve conduction and ensures trophic support of axons. In multiple sclerosis (MS) patients, remyelination has been observed in both white and grey matter and found to be more efficient in the cortex. Brain-enriched myelin-associated protein 1 (BCAS1) identifies oligodendrocyte lineage cells in the stage of active myelin formation in development and regeneration. Other than in the white matter, BCAS1+ oligodendrocytes are maintained at high densities in the cortex throughout life. Here, we investigated cortical lesions in human biopsy and autopsy tissue from patients with MS in direct comparison to demyelinating mouse models and demonstrate that following a demyelinating insult BCAS1+ oligodendrocytes in remyelinating cortical lesions shift from a quiescent to an activated, internode-forming morphology co-expressing myelin-associated glycoprotein (MAG), necessary for axonal contact formation. Noteworthy, activated BCAS1+ oligodendrocytes are found at early time points of experimental demyelination amidst ongoing inflammation. In human tissue, activated BCAS 1+ oligodendrocytes correlate with the density of myeloid cells, further supporting their involvement in an immediate regenerative response. Furthermore, studying the microscopically normal appearing non demyelinated cortex in patients with chronic MS, we find a shift from quiescent BCAS1+ oligodendrocytes to mature, myelin-maintaining oligodendrocytes, suggesting oligodendrocyte differentiation and limited replenishment of BCAS1+ oligodendrocytes in long-standing disease. We also demonstrate that part of perineuronal satellite oligodendrocytes are BCAS1+ and contribute to remyelination in human and experimental cortical demyelination. In summary, our results provide evidence from human tissue and experimental models that BCAS1+ cells in the adult cortex represent a population of pre-differentiated oligodendrocytes that rapidly react after a demyelinating insult thus enabling immediate myelin regeneration. In addition, our data suggest that limited replenishment of BCAS1+ oligodendrocytes may contribute to the remyelination failure observed in the cortex in chronic MS.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treatment of neurologic pathology and inflammation in Machado-Joseph disease through in vivo self-assembled siRNA. 通过体内自组装 siRNA 治疗马查多-约瑟夫病的神经病理学和炎症。
IF 10.6 1区 医学
Brain Pub Date : 2024-09-24 DOI: 10.1093/brain/awae304
Zhizong Li, Xinghu Du, Yixuan Yang, Li Zhang, Penglu Chen, Yansheng Kan, Jinmeng Pan, Lishan Lin, Ding Liu, Xiaohong Jiang, Chen-Yu Zhang, Zhong Pei, Xi Chen
{"title":"Treatment of neurologic pathology and inflammation in Machado-Joseph disease through in vivo self-assembled siRNA.","authors":"Zhizong Li, Xinghu Du, Yixuan Yang, Li Zhang, Penglu Chen, Yansheng Kan, Jinmeng Pan, Lishan Lin, Ding Liu, Xiaohong Jiang, Chen-Yu Zhang, Zhong Pei, Xi Chen","doi":"10.1093/brain/awae304","DOIUrl":"https://doi.org/10.1093/brain/awae304","url":null,"abstract":"<p><p>Machado-Joseph disease, also known as Spinocerebellar ataxia type 3 (MJD/SCA3), is a fatal autosomal dominant hereditary ataxia characterized by cerebellar ataxia resulting from the abnormal expansion of CAG repeats in exon 10 of the ATXN3 gene. Presently, there is no effective treatment for SCA3. Small interfering RNAs (siRNAs) are emerging as potential therapeutic strategies to specifically target the disease-causing mutant ATXN3 (mATXN3) protein. However, the delivery efficiency of siRNAs remains a major obstacle for clinical application, particularly in brain disorders. This study aimed to develop a synthetic biology strategy to reprogram the host liver as a tissue chassis to induce and deliver in vivo self-assembled siRNAs (IVSA-siRNAs) to target the ATXN3 gene. A synthetic construct directed by a cytomegalovirus promoter was designed to encode a neuron-targeting rabies virus glycoprotein tag and mATXN3-siRNA. After intravenous injection, the synthetic construct was taken up by mouse livers, which were then reprogrammed to enable the self-assembly, production, and secretion of small extracellular vesicles (sEVs) encapsulating mATXN3-siRNA. The sEV-encapsulated mATXN3-siRNA was further transported through the endogenous circulating system of sEVs, crossing the blood-brain barrier and reaching the cerebellar cortex and spinal cerebellar tract, where they silenced the ATXN3 gene. Treatment with the synthetic construct for 8 or 12 weeks led to significant improvements in motor balance ability and reduction of cerebellar atrophy in YACMJD84.2 transgenic mice. The number of Purkinje cells in the cerebellar cortex was significantly increased, and the loss of myelin basic protein was reduced. Moreover, the quantity of neurotoxic nuclear inclusion bodies and the expression of glial fibrillary acidic protein, which promotes neuroinflammation in activated astrocytes, were decreased significantly. The synthetic construct facilitated the generation and delivery of IVSA-siRNA to the cerebellar cortex and spinal cerebellar tract, thereby inhibiting the expression of mATXN3 protein. This treatment successfully addressed motor impairments, alleviated neuropathological phenotypes, and mitigated neuroinflammation in YACMJD84.2 transgenic mice. Our strategy effectively overcomes the primary challenges associated with siRNA therapy for cerebellar ataxia, offering a promising avenue for future clinical treatments.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical-grade intranasal NGF fuels neurological and metabolic functions of Mecp2-deficient mice. 临床级鼻内 NGF 可促进 Mecp2 缺陷小鼠的神经和代谢功能。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-20 DOI: 10.1093/brain/awae291
Diego Pozzer,Marzia Indrigo,Martina Breccia,Elena Florio,Camilla Aurora Franchino,Giuseppina De Rocco,Francesca Maltecca,Antonio Fadda,Marzia Rossato,Andrea Aramini,Marcello Allegretti,Angelisa Frasca,Lidia De Filippis,Nicoletta Landsberger
{"title":"Clinical-grade intranasal NGF fuels neurological and metabolic functions of Mecp2-deficient mice.","authors":"Diego Pozzer,Marzia Indrigo,Martina Breccia,Elena Florio,Camilla Aurora Franchino,Giuseppina De Rocco,Francesca Maltecca,Antonio Fadda,Marzia Rossato,Andrea Aramini,Marcello Allegretti,Angelisa Frasca,Lidia De Filippis,Nicoletta Landsberger","doi":"10.1093/brain/awae291","DOIUrl":"https://doi.org/10.1093/brain/awae291","url":null,"abstract":"MECP2 deficiency causes a broad spectrum of neuropsychiatric disorders that can affect both genders. Rett syndrome is the most common and is characterized by an apparently normal growth period followed by a regression phase in which patients lose most of their previously acquired skills. After this dramatic period, various symptoms progressively appear, including severe intellectual disability, epilepsy, apraxia, breathing abnormalities and motor deterioration. MECP2 encodes for an epigenetic transcription factor that is particularly abundant in the brain; consequently, several transcriptional defects characterize the Rett syndrome brain. The well-known deficiency of several neurotrophins and growth factors, together with the positive effects exerted by Trofinetide, a synthetic analogue of insulin-like growth factor 1, in Rett patients and in mouse models of Mecp2 deficiency, prompted us to investigate the therapeutic potential of nerve growth factor. Initial in vitro studies demonstrated a healing effect of rhNGF on neuronal maturation and activity in cultured Mecp2-null neurons. Subsequently, we designed in vivo studies with clear translational potential using intranasally administered recombinant human GMP-grade NGF (rhNGF) already used in the clinic. Efficacy of rhNGF in vivo in Mecp2-null hemizygous male mice and heterozygous female mice was assessed. General well-being was evaluated by a conventional phenotypic score and motor performance through the Pole and Beam Walking tests, while cognitive function and interaction with the environment were measured by the Novel Object Recognition Test and the Marble Burying test, respectively. At the end of the treatment, mouse cortices were dissected and bulk RNA sequencing was performed to identify the molecular pathways involved in the protective effects of rhNGF. rhNGF exerted positive effects on cognitive and motor functions in both male and female mouse models of Rett syndrome. In male hemizygous mice, which suffer from significantly more severe and rapidly advancing symptoms, the drug's ability to slow the disease's progression was more pronounced. The unbiased research for the molecular mechanisms triggering the observed benefits revealed a strong positive effect on gene sets related to oxidative phosphorylation, mitochondrial structure and function. These results were validated by demonstrating the drug's ability to improve mitochondrial structure and respiration in Mecp2-null cerebral cortices. Furthermore, GO analyses indicated that NGF exerted the expected improvement in neuronal maturation. We conclude that intranasal administration of rhNGF is a non-invasive and effective route of administration for the treatment of Rett syndrome and possibly for other neurometabolic disorders with overt mitochondrial dysfunction.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity. 富亮氨酸胶质瘤失活 1 在调节疼痛敏感性中的作用。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-20 DOI: 10.1093/brain/awae302
Adham Farah,Ryan Patel,Piotr Poplawski,Benjamin J Wastie,Mandy Tseng,Allison M Barry,Omar Daifallah,Akash Dubb,Ivan Paul,Hoi Lao Cheng,Faisal Feroz,Yuhe Su,Marva Chan,Hanns Ulrich Zeilhofer,Theodore Price,David L Bennett,Kirsty Bannister,John M Dawes
{"title":"A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity.","authors":"Adham Farah,Ryan Patel,Piotr Poplawski,Benjamin J Wastie,Mandy Tseng,Allison M Barry,Omar Daifallah,Akash Dubb,Ivan Paul,Hoi Lao Cheng,Faisal Feroz,Yuhe Su,Marva Chan,Hanns Ulrich Zeilhofer,Theodore Price,David L Bennett,Kirsty Bannister,John M Dawes","doi":"10.1093/brain/awae302","DOIUrl":"https://doi.org/10.1093/brain/awae302","url":null,"abstract":"Neuronal hyperexcitability is a key driver of persistent pain states including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1), is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain. Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models. LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system (PNS) are poorly understood. We show that LGI1 is highly expressed in DRG and spinal cord dorsal horn neurons in both mouse and human. Using transgenic muse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+), or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we find that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared to littermate controls. In from LGI1fl/Hoxb8+ mice, we find loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice) and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we find that LGI1 expression is dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared to controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hypersensitivity and allodynia. Our findings point to effects of LGI1 at both the level of the DRG and spinal cord, including an important impact of spinal LGI1 on pathological pain. Overall, we find a novel role for LGI1 with relevance to clinical pain.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical experimental medicine in the UK. 英国的临床实验医学。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-20 DOI: 10.1093/brain/awae301
Yanick Crow
{"title":"Clinical experimental medicine in the UK.","authors":"Yanick Crow","doi":"10.1093/brain/awae301","DOIUrl":"https://doi.org/10.1093/brain/awae301","url":null,"abstract":"","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of motor behaviour, cortical oscillations and deep brain stimulation in Parkinson disease. 帕金森病患者的运动行为、皮层振荡和脑深部刺激之间的相互作用。
IF 14.5 1区 医学
Brain Pub Date : 2024-09-20 DOI: 10.1093/brain/awae300
Koorosh Mirpour,Nader Pouratian
{"title":"Interaction of motor behaviour, cortical oscillations and deep brain stimulation in Parkinson disease.","authors":"Koorosh Mirpour,Nader Pouratian","doi":"10.1093/brain/awae300","DOIUrl":"https://doi.org/10.1093/brain/awae300","url":null,"abstract":"Recent progress in the study of Parkinson's disease (PD) has highlighted the pivotal role of beta oscillations within the basal ganglia-thalamo-cortical network in modulating motor symptoms. Predominantly manifesting as transient bursts, these beta oscillations are central to the pathophysiology of PD motor symptoms, especially bradykinesia. Our central hypothesis is that increased bursting duration in cortex, coupled with kinematics of movement, disrupts the typical flow of neural information, leading to observable changes in motor behavior in PD. To explore this hypothesis, we employed an integrative approach, analyzing the interplay between moment-to-moment brain dynamics and movement kinematics, and the modulation of these relationships by therapeutic deep brain stimulation (DBS). Local field potentials were recorded from the hand motor (M1) and premotor cortical (PM) areas, and internal Globus Pallidus (GPi) in 26 PD patients undergoing DBS implantation surgery. Participants executed rapid alternating hand movements in 30-second blocks, both with and without therapeutic pallidal stimulation. Behaviorally, the analysis revealed bradykinesia, with hand movement cycle width increasing linearly over time during DBS-OFF blocks. Crucially, there was a moment-to-moment correlation between M1 low beta burst duration and movement cycle width, a relationship that dissipated with therapeutic DBS. Further analyses suggest that high gamma activity correlates with enhanced motor performance with DBS-ON. Regardless of the nature of coupling, DBS's modulation of cortical bursting activity appeared to amplify the brain signals' informational content regarding instantaneous movement changes. Our findings underscore that DBS significantly reshapes the interaction between motor behavior and neural signals in PD, not only modulating specific bands but also expanding the system's capability to process and relay information for motor control. These insights shed light on the possible network mechanisms underlying DBS therapeutic effects, suggesting a profound impact on both neural and motor domains. Mirpour and Pouratian investigate the interplay between movement, brain oscillations and deep brain stimulation (DBS) in Parkinson's disease. They show that beta oscillations interfere with the moment-to-moment control of movement, and that DBS can enhance communication within brain networks, mitigating these effects.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomical and behavioural correlates of auditory perception in developmental dyslexia 发育性阅读障碍患者听觉感知的解剖和行为相关性
IF 14.5 1区 医学
Brain Pub Date : 2024-09-19 DOI: 10.1093/brain/awae298
Ting Qi, Maria Luisa Mandelli, Christa L Watson Pereira, Emma Wellman, Rian Bogley, Abigail E Licata, Zachary Miller, Boon Lead Tee, Jessica de Leon, Edward F Chang, Yulia Oganian, Maria Luisa Gorno-Tempini
{"title":"Anatomical and behavioural correlates of auditory perception in developmental dyslexia","authors":"Ting Qi, Maria Luisa Mandelli, Christa L Watson Pereira, Emma Wellman, Rian Bogley, Abigail E Licata, Zachary Miller, Boon Lead Tee, Jessica de Leon, Edward F Chang, Yulia Oganian, Maria Luisa Gorno-Tempini","doi":"10.1093/brain/awae298","DOIUrl":"https://doi.org/10.1093/brain/awae298","url":null,"abstract":"Developmental dyslexia is typically associated with difficulties in basic auditory processing and in manipulating speech sounds. However, the neuroanatomical correlates of auditory difficulties in developmental dyslexia (DD) and their contribution to individual clinical phenotypes are still unknown. Recent intracranial electrocorticography findings associated processing of sound amplitude rises and speech sounds with posterior and middle superior temporal gyrus (STG), respectively. We hypothesize that regional STG anatomy will relate to specific auditory abilities in DD, and that auditory processing abilities will relate to behavioral difficulties with speech and reading. One hundred and ten children (78 DD, 32 typically developing, age 7-15 years) completed amplitude rise time and speech in noise discrimination tasks. They also underwent a battery of cognitive tests. Anatomical MRI scans were used to identify regions in which local cortical gyrification complexity correlated with auditory behavior. Behaviorally, amplitude rise time but not speech in noise performance was impaired in DD. Neurally, amplitude rise time and speech in noise performance correlated with gyrification in posterior and middle STG, respectively. Furthermore, amplitude rise time significantly contributed to reading impairments in DD, while speech in noise only explained variance in phonological awareness. Finally, amplitude rise time and speech in noise performance were not correlated, and each task was correlated with distinct neuropsychological measures, emphasizing their unique contributions to DD. Overall, we provide a direct link between the neurodevelopment of the left STG and individual variability in auditory processing abilities in neurotypical and dyslexic populations.","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信