Olga Carletta,Camilla Perfetto,Olivia M Rifai,Francesca Manganelli,Fergal M Waldron,Tom Maniatis,Jenna M Gregory,Valeria Gerbino
{"title":"Genotype-specific interferon signatures in amyotrophic lateral sclerosis relate to disease severity.","authors":"Olga Carletta,Camilla Perfetto,Olivia M Rifai,Francesca Manganelli,Fergal M Waldron,Tom Maniatis,Jenna M Gregory,Valeria Gerbino","doi":"10.1093/brain/awaf324","DOIUrl":null,"url":null,"abstract":"Innate immune signaling pathways are hyperactivated in the central nervous system (CNS) of patients with Amyotrophic Lateral Sclerosis (ALS), as well as in preclinical models with diverse causative backgrounds including TDP-43, SOD1, and C9orf72 mutations. This raises an important question of whether these pathways are key pathogenic features of the disease, and whether therapeutic amelioration could be beneficial. Here, we systematically profile Type-I interferon (IFN)-stimulated gene (ISG) expression signatures using a non-biased approach in CNS tissue from a cohort of 36 individuals with ALS, including sporadic ALS (sALS; n=18), genetic ALS caused by (i) a C9orf72 hexanucleotide repeat expansion (C9-ALS; n=11), and (ii) a SOD1 mutation (SOD1-ALS; n=5), alongside age- and sex-matched individuals who died of a non-neurological cause (n=12). Using this deeply phenotyped cohort we have implemented targeted transcriptomic analysis and immunohistochemistry to interrogate the nature and extent of the activation of the Type-I IFN response in patients. We determined disease and genotype specific IFN signatures that correlate with clinical phenotype. Correlation analysis linked six ISGs with aggressive disease progression, as indicated by negative correlation with age at death in ALS patients. Notably, significant upregulation of ISGs was observed in C9-ALS patients, with higher ISG expression correlating with shorter disease duration. Noting that our genotype and disease specific signatures correlated with metrics of disease progression, we explored the therapeutic potential of targeting this pathway in a mouse model of ALS. Treatment with an IFN pathway inhibitor reduced IFN response markers, delayed disease progression, including motor decline, and extended survival in ALS mice. We conclude that upregulation of gene expression in the Type-I IFN pathway represents a key pathological feature of ALS and that inhibiting this pathway may provide a promising therapeutic approach for treating ALS.","PeriodicalId":9063,"journal":{"name":"Brain","volume":"1 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awaf324","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Innate immune signaling pathways are hyperactivated in the central nervous system (CNS) of patients with Amyotrophic Lateral Sclerosis (ALS), as well as in preclinical models with diverse causative backgrounds including TDP-43, SOD1, and C9orf72 mutations. This raises an important question of whether these pathways are key pathogenic features of the disease, and whether therapeutic amelioration could be beneficial. Here, we systematically profile Type-I interferon (IFN)-stimulated gene (ISG) expression signatures using a non-biased approach in CNS tissue from a cohort of 36 individuals with ALS, including sporadic ALS (sALS; n=18), genetic ALS caused by (i) a C9orf72 hexanucleotide repeat expansion (C9-ALS; n=11), and (ii) a SOD1 mutation (SOD1-ALS; n=5), alongside age- and sex-matched individuals who died of a non-neurological cause (n=12). Using this deeply phenotyped cohort we have implemented targeted transcriptomic analysis and immunohistochemistry to interrogate the nature and extent of the activation of the Type-I IFN response in patients. We determined disease and genotype specific IFN signatures that correlate with clinical phenotype. Correlation analysis linked six ISGs with aggressive disease progression, as indicated by negative correlation with age at death in ALS patients. Notably, significant upregulation of ISGs was observed in C9-ALS patients, with higher ISG expression correlating with shorter disease duration. Noting that our genotype and disease specific signatures correlated with metrics of disease progression, we explored the therapeutic potential of targeting this pathway in a mouse model of ALS. Treatment with an IFN pathway inhibitor reduced IFN response markers, delayed disease progression, including motor decline, and extended survival in ALS mice. We conclude that upregulation of gene expression in the Type-I IFN pathway represents a key pathological feature of ALS and that inhibiting this pathway may provide a promising therapeutic approach for treating ALS.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.