Brain最新文献

筛选
英文 中文
Heterozygous variants in USP25 cause genetic generalized epilepsy. USP25的杂合子变体会导致遗传性全身性癫痫。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae191
Cui-Xia Fan, Xiao-Rong Liu, Dao-Qi Mei, Bing-Mei Li, Wen-Bin Li, Huan-Cheng Xie, Jie Wang, Nan-Xiang Shen, Zi-Long Ye, Qiang-Long You, Ling-Ying Li, Xiao-Chong Qu, Li-Zhi Chen, Jin-Jie Liang, Ming-Rui Zhang, Na He, Jia Li, Jun-Ying Gao, Wei-Yi Deng, Wen-Zhe Liu, Wen-Ting Wang, Wei-Ping Liao, Qian Chen, Yi-Wu Shi
{"title":"Heterozygous variants in USP25 cause genetic generalized epilepsy.","authors":"Cui-Xia Fan, Xiao-Rong Liu, Dao-Qi Mei, Bing-Mei Li, Wen-Bin Li, Huan-Cheng Xie, Jie Wang, Nan-Xiang Shen, Zi-Long Ye, Qiang-Long You, Ling-Ying Li, Xiao-Chong Qu, Li-Zhi Chen, Jin-Jie Liang, Ming-Rui Zhang, Na He, Jia Li, Jun-Ying Gao, Wei-Yi Deng, Wen-Zhe Liu, Wen-Ting Wang, Wei-Ping Liao, Qian Chen, Yi-Wu Shi","doi":"10.1093/brain/awae191","DOIUrl":"10.1093/brain/awae191","url":null,"abstract":"<p><p>USP25 encodes ubiquitin-specific protease 25, a key member of the deubiquitinating enzyme family that is involved in neural fate determination. Although abnormal expression in Down's syndrome was reported previously, the specific role of USP25 in human diseases has not been defined. In this study, we performed trio-based whole exome sequencing in a cohort of 319 cases (families) with generalized epilepsy of unknown aetiology. Five heterozygous USP25 variants, including two de novo and three co-segregated variants, were determined in eight individuals affected by generalized seizures and/or febrile seizures from five unrelated families. The frequency of USP25 variants showed a significantly high aggregation in this cohort compared with the East Asian population and all populations in the gnomAD database. The mean age at onset of febrile and afebrile seizures were 10 months (infancy) and 11.8 years (juvenile), respectively. The patients achieved seizure freedom, except that one had occasional nocturnal seizures at the last follow-up. Two patients exhibited intellectual disability. Usp25 was expressed ubiquitously in mouse brain with two peaks, on embryonic Days 14-16 and postnatal Day 21, respectively. In human brain, likewise, USP25 is expressed in the fetus/early childhood stage and with a second peak at ∼12-20 years old, consistent with the seizure onset age in patients during infancy and in juveniles. To investigate the functional impact of USP25 deficiency in vivo, we established Usp25 knockout mice, which showed increased seizure susceptibility compared with wild-type mice in a pentylenetetrazol-induced seizure test. To explore the impact of USP25 variants, we used multiple functional detections. In HEK293 T cells, the variant associated with a severe phenotype (p.Gln889Ter) led to a significant reduction of mRNA and protein expressions but formed stable truncated dimers with an increment of deubiquitinating enzyme activities and abnormal cellular aggregations, indicating a gain-of-function effect. The p.Gln889Ter and p.Leu1045del variants increased neuronal excitability in mouse brain, with a higher firing ability in p.Gln889Ter. These functional impairments align with the severity of the observed phenotypes, suggesting a genotype-phenotype correlation. Hence, a moderate association between USP25 and epilepsy was noted, indicating that USP25 is potentially a predisposing gene for epilepsy. Our results from Usp25 null mice and the patient-derived variants indicated that USP25 would play an epileptogenic role via loss-of-function or gain-of-function effects. The truncated variant p.Gln889Ter would have a profoundly different effect on epilepsy. Together, our results underscore the significance of USP25 heterozygous variants in epilepsy, thereby highlighting the critical role of USP25 in the brain.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A direct spinal cord-computer interface enables the control of the paralysed hand in spinal cord injury. 脊髓-计算机直接接口使脊髓损伤患者能够控制瘫痪的手。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae088
Daniela Souza Oliveira, Matthias Ponfick, Dominik I Braun, Marius Osswald, Marek Sierotowicz, Satyaki Chatterjee, Douglas Weber, Bjoern Eskofier, Claudio Castellini, Dario Farina, Thomas Mehari Kinfe, Alessandro Del Vecchio
{"title":"A direct spinal cord-computer interface enables the control of the paralysed hand in spinal cord injury.","authors":"Daniela Souza Oliveira, Matthias Ponfick, Dominik I Braun, Marius Osswald, Marek Sierotowicz, Satyaki Chatterjee, Douglas Weber, Bjoern Eskofier, Claudio Castellini, Dario Farina, Thomas Mehari Kinfe, Alessandro Del Vecchio","doi":"10.1093/brain/awae088","DOIUrl":"10.1093/brain/awae088","url":null,"abstract":"<p><p>Paralysis of the muscles controlling the hand dramatically limits the quality of life for individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5-C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease. 路易体病中阿尔茨海默病共同病理学的临床和诊断意义。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae203
Lorenzo Barba, Samir Abu-Rumeileh, Henryk Barthel, Federico Massa, Matteo Foschi, Giovanni Bellomo, Lorenzo Gaetani, Dietmar R Thal, Lucilla Parnetti, Markus Otto
{"title":"Clinical and diagnostic implications of Alzheimer's disease copathology in Lewy body disease.","authors":"Lorenzo Barba, Samir Abu-Rumeileh, Henryk Barthel, Federico Massa, Matteo Foschi, Giovanni Bellomo, Lorenzo Gaetani, Dietmar R Thal, Lucilla Parnetti, Markus Otto","doi":"10.1093/brain/awae203","DOIUrl":"10.1093/brain/awae203","url":null,"abstract":"<p><p>Concomitant Alzheimer's disease (AD) pathology is a frequent event in the context of Lewy body disease (LBD), occurring in approximately half of all cases. Evidence shows that LBD patients with AD copathology show an accelerated disease course, a greater risk of cognitive decline and an overall poorer prognosis. However, LBD-AD cases may show heterogeneous motor and non-motor phenotypes with a higher risk of dementia and, consequently, be not rarely misdiagnosed. In this review, we summarize the current understanding of LBD-AD by discussing the synergistic effects of AD neuropathological changes and Lewy pathology and their clinical relevance. Furthermore, we provide an extensive overview of neuroimaging and fluid biomarkers under assessment for use in LBD-AD and their possible diagnostic and prognostic values. AD pathology can be predicted in vivo by means of CSF, MRI and PET markers, whereas the most promising technique to date for identifying Lewy pathology in different biological tissues is the α-synuclein seed amplification assay. Pathological imaging and CSF AD biomarkers are associated with a higher likelihood of cognitive decline in LBD but do not always mirror the neuropathological severity as in pure AD. Implementing the use of blood-based AD biomarkers might allow faster screening of LBD patients for AD copathology, thus improving the overall diagnostic sensitivity for LBD-AD. Finally, we discuss the literature on novel candidate biomarkers being exploited in LBD-AD to investigate other aspects of neurodegeneration, such as neuroaxonal injury, glial activation and synaptic dysfunction. The thorough characterization of AD copathology in LBD should be taken into account when considering differential diagnoses of dementia syndromes, to allow prognostic evaluation on an individual level, and to guide symptomatic and disease-modifying therapies.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grey matter ageing-related tau astrogliopathy: associations with brain pathologies and cognitive decline. 与灰质老化相关的 tau 星形胶质细胞病变:与大脑病变和认知能力下降的关联。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae250
Sonal Agrawal, Lei Yu, Sue E Leurgans, Alifiya Kapasi, Lisa L Barnes, David A Bennett, Patricia A Boyle, Julie A Schneider
{"title":"Grey matter ageing-related tau astrogliopathy: associations with brain pathologies and cognitive decline.","authors":"Sonal Agrawal, Lei Yu, Sue E Leurgans, Alifiya Kapasi, Lisa L Barnes, David A Bennett, Patricia A Boyle, Julie A Schneider","doi":"10.1093/brain/awae250","DOIUrl":"10.1093/brain/awae250","url":null,"abstract":"<p><p>Grey matter ageing-related tau astrogliopathy (ARTAG) pathology is common in aged brains and detected in multiple brain regions. However, the associations of grey matter ARTAG with Alzheimer's disease and other common age-related proteinopathies, in addition to clinical phenotypes, including Alzheimer's dementia and cognitive decline, remain unclear. We examined 442 decedents (mean age at death = 90 years, males = 32%) from three longitudinal community-based clinical-pathological studies. Using AT8 immunohistochemistry, grey matter ARTAG pathology was counted in the superior frontal region, anterior temporal tip and amygdala and summarized as a severity score ranging from zero (none) to six (severe). Alzheimer's disease and other common age-related neuropathologies were also evaluated. The diagnosis of Alzheimer's dementia was based on clinical evaluations; annual tests of cognitive performance were summarized as global cognition and five cognitive domains. Multivariable logistic regression tested the associations of grey matter ARTAG pathology with an array of age-related neuropathologies. To evaluate associations of grey matter ARTAG pathology with Alzheimer's dementia and cognitive decline, we used logistic regression and linear mixed-effect models. Grey matter ARTAG pathology was seen in 324 (73%) participants, of which 303 (68%) participants had ARTAG in the amygdala, 246 (56%) in the anterior temporal tip and 137 (31%) in the superior frontal region. Grey matter ARTAG pathology from each of the three regions was associated with a pathological diagnosis of Alzheimer's disease and limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy-neuropathological change but not with vascular pathology. In fully adjusted models that controlled for demographics, Alzheimer's disease and common age-related pathologies, an increase in severity of grey matter ARTAG pathology in the superior frontal cortex, but not in the amygdala or the anterior temporal tip, was associated with higher odds of Alzheimer's dementia and faster decline in global cognition, episodic memory and semantic memory. These results provide compelling evidence that grey matter ARTAG, specifically in the superior frontal cortex, contributes to Alzheimer's dementia and cognitive decline in old age.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ophthalmate is a new regulator of motor functions via CaSR: implications for movement disorders. Ophthalmate是通过CaSR调节运动功能的新调节器:对运动障碍的影响。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae097
Sammy Alhassen, Derk Hogenkamp, Hung Anh Nguyen, Saeed Al Masri, Geoffrey W Abbott, Olivier Civelli, Amal Alachkar
{"title":"Ophthalmate is a new regulator of motor functions via CaSR: implications for movement disorders.","authors":"Sammy Alhassen, Derk Hogenkamp, Hung Anh Nguyen, Saeed Al Masri, Geoffrey W Abbott, Olivier Civelli, Amal Alachkar","doi":"10.1093/brain/awae097","DOIUrl":"10.1093/brain/awae097","url":null,"abstract":"<p><p>Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's disease, we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 h, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signalling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in Parkinson's disease mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in Parkinson's disease mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449132/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cul-4 inhibition rescues spastin levels and reduces defects in hereditary spastic paraplegia models. Cul-4抑制剂能挽救遗传性痉挛性截瘫模型中的海绵蛋白水平并减少缺陷。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae095
Francesca Sardina, Claudia Carsetti, Ludovica Giorgini, Gaia Fattorini, Gianluca Cestra, Cinzia Rinaldo
{"title":"Cul-4 inhibition rescues spastin levels and reduces defects in hereditary spastic paraplegia models.","authors":"Francesca Sardina, Claudia Carsetti, Ludovica Giorgini, Gaia Fattorini, Gianluca Cestra, Cinzia Rinaldo","doi":"10.1093/brain/awae095","DOIUrl":"10.1093/brain/awae095","url":null,"abstract":"<p><p>Hereditary spastic paraplegias (HSPs) are degenerative motor neuron diseases characterized by progressive spasticity and weakness in the lower limbs. The most common form of HSP is due to SPG4 gene haploinsufficiency. SPG4 encodes the microtubule severing enzyme spastin. Although, there is no cure for SPG4-HSP, strategies to induce a spastin recovery are emerging as promising therapeutic approaches. Spastin protein levels are regulated by poly-ubiquitination and proteasomal-mediated degradation, in a neddylation-dependent manner. However, the molecular players involved in this regulation are unknown. Here, we show that the Cullin-4-RING E3 ubiquitin ligase complex (CRL4) regulates spastin stability. Inhibition of CRL4 increases spastin levels by preventing its poly-ubiquitination and subsequent degradation in spastin-proficient and in patient derived SPG4 haploinsufficient cells. To evaluate the role of CRL4 complex in spastin regulation in vivo, we developed a Drosophila melanogaster model of SPG4 haploinsufficiency which show alterations of synapse morphology and locomotor activity, recapitulating phenotypical defects observed in patients. Downregulation of the CRL4 complex, highly conserved in Drosophila, rescues spastin levels and the phenotypical defects observed in flies. As a proof of concept of possible pharmacological treatments, we demonstrate a recovery of spastin levels and amelioration of the SPG4-HSP-associated defects both in the fly model and in patient-derived cells by chemical inactivation of the CRL4 complex with NSC1892. Taken together, these findings show that CRL4 contributes to spastin stability regulation and that it is possible to induce spastin recovery and rescue of SPG4-HSP defects by blocking the CRL4-mediated spastin degradation.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dominant CST3 variants cause adult onset leukodystrophy without amyloid angiopathy. 显性CST3变体会导致成人发病型白营养不良症,但不伴有淀粉样血管病。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae085
Caroline G Bergner, Marjolein Breur, M Clara Soto-Bernardini, Lisa Schäfer, Julia Lier, Diana Le Duc, Linnaeus Bundalian, Susanna Schubert, David Brenner, Friedmar R Kreuz, Björn Schulte, Quinten Waisfisz, Marianna Bugiani, Wolfgang Köhler, Heinrich Sticht, Rami Abou Jamra, Marjo S van der Knaap
{"title":"Dominant CST3 variants cause adult onset leukodystrophy without amyloid angiopathy.","authors":"Caroline G Bergner, Marjolein Breur, M Clara Soto-Bernardini, Lisa Schäfer, Julia Lier, Diana Le Duc, Linnaeus Bundalian, Susanna Schubert, David Brenner, Friedmar R Kreuz, Björn Schulte, Quinten Waisfisz, Marianna Bugiani, Wolfgang Köhler, Heinrich Sticht, Rami Abou Jamra, Marjo S van der Knaap","doi":"10.1093/brain/awae085","DOIUrl":"10.1093/brain/awae085","url":null,"abstract":"<p><p>Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. This perception has been altered in recent years, as a growing number of leukodystrophies have been described as having an onset in adulthood. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic cerebral amyloid angiopathy found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid to older adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later displayed severe degeneration and loss. In addition, despite the loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. 与感染痊愈后的对照组相比,长期 COVID 患者的大脑和认知能力发生了变化。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-03 DOI: 10.1093/brain/awae101
Víctor M Serrano Del Pueblo, Gemma Serrano-Heras, Carlos M Romero Sánchez, Pepa Piqueras Landete, Laura Rojas-Bartolome, Inmaculada Feria, Richard G M Morris, Bryan Strange, Francisco Mansilla, Linda Zhang, Beatriz Castro-Robles, Lourdes Arias-Salazar, Susana López-López, María Payá, Tomás Segura, Mónica Muñoz-López
{"title":"Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects.","authors":"Víctor M Serrano Del Pueblo, Gemma Serrano-Heras, Carlos M Romero Sánchez, Pepa Piqueras Landete, Laura Rojas-Bartolome, Inmaculada Feria, Richard G M Morris, Bryan Strange, Francisco Mansilla, Linda Zhang, Beatriz Castro-Robles, Lourdes Arias-Salazar, Susana López-López, María Payá, Tomás Segura, Mónica Muñoz-López","doi":"10.1093/brain/awae101","DOIUrl":"10.1093/brain/awae101","url":null,"abstract":"<p><p>Between 2.5% and 28% of people infected with SARS-CoV-2 suffer long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in long COVID and the potential association between them. To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy control subjects chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with long COVID assessed by Addenbrooke's Cognitive Examination-III screening test [overall cognitive level (OCLz) = -0.39 ± 0.12] was significantly below the infection recovered-controls (OCLz = +0.32 ± 0.16, P < 0.01). We observed that 48% of patients with long COVID had episodic memory deficit, with 27% also with impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus. In addition, lower fractional anisotropy and higher radial diffusivity were observed in widespread areas of the patients' cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency. This study shows that patients with neurological long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140334630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopamine neuron dysfunction and loss in the PrknR275W mouse model of juvenile parkinsonism. PrknR275W幼年帕金森病小鼠模型中的多巴胺神经元功能障碍和缺失。
IF 10.6 1区 医学
Brain Pub Date : 2024-10-01 DOI: 10.1093/brain/awae276
Maria Regoni, Letizia Zanetti, Martina Sevegnani, Chiara Domenicale, Stefano Magnabosco, Jyoti C Patel, Megan K Fernandes, Ryan M Feeley, Elena Monzani, Cecilia Mini, Stefano Comai, Laura Cherchi, Danilo De Gregorio, Isabella Soliman, Fabio Ruto, Laura Croci, Giacomo Consalez, Simona Rodighiero, Andrea Ciammola, Flavia Valtorta, Michele Morari, Giovanni Piccoli, Margaret E Rice, Jenny Sassone
{"title":"Dopamine neuron dysfunction and loss in the PrknR275W mouse model of juvenile parkinsonism.","authors":"Maria Regoni, Letizia Zanetti, Martina Sevegnani, Chiara Domenicale, Stefano Magnabosco, Jyoti C Patel, Megan K Fernandes, Ryan M Feeley, Elena Monzani, Cecilia Mini, Stefano Comai, Laura Cherchi, Danilo De Gregorio, Isabella Soliman, Fabio Ruto, Laura Croci, Giacomo Consalez, Simona Rodighiero, Andrea Ciammola, Flavia Valtorta, Michele Morari, Giovanni Piccoli, Margaret E Rice, Jenny Sassone","doi":"10.1093/brain/awae276","DOIUrl":"https://doi.org/10.1093/brain/awae276","url":null,"abstract":"<p><p>Mutations in the PRKN gene encoding the protein parkin cause autosomal recessive juvenile parkinsonism (ARJP). Harnessing this mutation to create an early-onset Parkinson's disease mouse model would provide a unique opportunity to clarify the mechanisms involved in the neurodegenerative process and lay the groundwork for the development of neuroprotective strategies. To this end, we created a knock-in mouse carrying the homozygous PrknR275W mutation, which is the missense mutation with the highest allelic frequency in PRKN patients. We evaluated the anatomical and functional integrity of the nigrostriatal dopamine (DA) pathway, as well as motor behaviour in PrknR275W mice of both sexes. We report here that PrknR275W mice show early DA neuron dysfunction, age-dependent loss of DA neurons in the substantia nigra, decreased DA content and stimulus-evoked DA release in the striatum, and progressive motor impairment. Together, these data show that the PrknR275W mouse recapitulates key features of ARJP. Thus, these studies fill a critical need in the field by introducing a promising new Parkinson's disease model in which to study causative mechanisms of the disease and test therapeutic strategies.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury 用于创伤性脑损伤病理生理学分类的高维蛋白质组分析
IF 14.5 1区 医学
Brain Pub Date : 2024-09-26 DOI: 10.1093/brain/awae305
Lucia M Li, Eleftheria Kodosaki, Amanda Heslegrave, Henrik Zetterberg, Neil Graham, Karl Zimmerman, Eyal Soreq, Thomas Parker, Elena Garbero, Frederico Moro, Sandra Magnoni, Guido Bertolini, David J Loane, David J Sharp
{"title":"High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury","authors":"Lucia M Li, Eleftheria Kodosaki, Amanda Heslegrave, Henrik Zetterberg, Neil Graham, Karl Zimmerman, Eyal Soreq, Thomas Parker, Elena Garbero, Frederico Moro, Sandra Magnoni, Guido Bertolini, David J Loane, David J Sharp","doi":"10.1093/brain/awae305","DOIUrl":"https://doi.org/10.1093/brain/awae305","url":null,"abstract":"Pathophysiology and outcomes after Traumatic Brain Injury (TBI) are complex and heterogenous. Current classifications are uninformative about pathophysiology. Proteomic approaches with fluid-based biomarkers are ideal for exploring complex disease mechanisms, as they enable sensitive assessment of an expansive range of processes potentially relevant to TBI pathophysiology. We used novel high-dimensional, multiplex proteomic assays to assess altered plasma protein expression in acute TBI. We analysed samples from 88 participants from the BIO-AX-TBI cohort (n=38 moderate-severe TBI [Mayo Criteria], n=22 non-TBI trauma, n=28 non-injured controls) on two platforms: Alamar NULISA™ CNS Diseases and OLINK® Target 96 Inflammation. Patient participants were enrolled after hospital admission, and samples taken at a single timepoint up to 10 days post-injury. Participants also had neurofilament light, GFAP, total tau, UCH-L1 (all Simoa®) and S100B (Millipore) data. The Alamar panel assesses 120 proteins, most of which were previously unexplored in TBI, plus proteins with known TBI-specificity, such as GFAP. A subset (n=29 TBI, n=24 non-injured controls) also had subacute (10 days to 6 weeks post-injury) 3T MRI measures of lesion volume and white matter injury (fractional anisotropy). Differential Expression analysis identified 16 proteins with TBI-specific significantly different plasma expression. These were neuronal markers (calbindin2, UCH-L1, visinin-like protein1), astroglial markers (S100B, GFAP), neurodegenerative disease proteins (total tau, pTau231, PSEN1, amyloid-beta-42, 14-3-3γ), inflammatory cytokines (IL16, CCL2, ficolin2), cell signalling (SFRP1), cell metabolism (MDH1) and autophagy related (sequestome1) proteins. Acute plasma levels of UCH-L1, PSEN1, total tau and pTau231 correlated with subacute lesion volume. Sequestome1 was positively correlated, whilst CLL2 was inversely correlated, with white matter fractional anisotropy. Neuronal, astroglial, tau and neurodegenerative proteins correlated with each other, IL16, MDH1 and sequestome1. Exploratory clustering (k means) by acute protein expression identified 3 TBI subgroups that differed in injury patterns, but not age or outcome. One TBI cluster had significantly lower white matter fractional anisotropy than control-predominant clusters, but had significantly lower lesion subacute lesions volumes than another TBI cluster. Proteins that overlapped on two platforms had excellent (r&amp;gt;0.8) correlations between values. We identified TBI-specific changes in acute plasma levels of proteins involved in neurodegenerative disease, inflammatory and cellular processes. These changes were related to patterns of injury, thus demonstrating that processes previously only studied in animal models are also relevant in human TBI pathophysiology. Our study highlights how proteomic approaches might improve classification and understanding of TBI pathophysiology, with implications for prognostication and ","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信