Biomedical materials最新文献

筛选
英文 中文
LBL assembly of Ag@Ti3C2T X and chitosan on PLLA substrate to enhance antibacterial and biocompatibility 的LBL组件Ag@Ti3C2TX和壳聚糖在PLLA基质上增强抗菌性和生物相容性
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-31 DOI: 10.1088/1748-605X/ac62e7
Haibo Wang, A. Dong, K. Hu, Weiwei Sun, Jundong Wang, L. Han, L. Mo, Luhai Li, Wei Zhang, Yan Guo, Li Zhu, F. Cui, Yen Wei
{"title":"LBL assembly of Ag@Ti3C2T X and chitosan on PLLA substrate to enhance antibacterial and biocompatibility","authors":"Haibo Wang, A. Dong, K. Hu, Weiwei Sun, Jundong Wang, L. Han, L. Mo, Luhai Li, Wei Zhang, Yan Guo, Li Zhu, F. Cui, Yen Wei","doi":"10.1088/1748-605X/ac62e7","DOIUrl":"https://doi.org/10.1088/1748-605X/ac62e7","url":null,"abstract":"Poly L-lactic acid (PLLA) is a non-toxic, biocompatible degradable polymer material with excellent mechanical properties after moulding. However, it faces challenges in the use of biomedical materials because of its intolerance to bacteria. Here, we use an easy-to-operate method to prepare a composite multilayer membrane: PLLA membrane was used as substrates to assemble positively charged chitosan and negatively charged Ag@MXene on the surface using the layer-by-layer (LBL) method. The assembly process was detected by fluorescein isothiocyanate-labelled chitosan and the thickness of the coating multilayer was also detected as 210.0 ± 12.1 nm for P-M membrane and 460.5 ± 26.5 nm for P-Ag@M membrane. The surface self-assembled multilayers exhibited 91.27% and 96.11% growth inhibition ratio against Escherichia coli and Staphylococcus aureus strains under 808 nm near-infrared laser radiation with a synergistic photothermal antibacterial effect. Furthermore, best biocompatibility of P-M and P-Ag@M membranes compare to PLLA membrane motivated us to further explore its application in biomedical materials.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42811689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior 氧化石墨烯包裹镁橄榄石支架提高力学性能和抗菌性能
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-31 DOI: 10.1088/1748-605X/ac62e8
A. Najafinezhad, H. R. Bakhsheshi‐Rad, A. Saberi, A. Nourbakhsh, M. Daroonparvar, A. Ismail, S. Sharif, S. Ramakrishna, Yunqian Dai, F. Berto
{"title":"Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior","authors":"A. Najafinezhad, H. R. Bakhsheshi‐Rad, A. Saberi, A. Nourbakhsh, M. Daroonparvar, A. Ismail, S. Sharif, S. Ramakrishna, Yunqian Dai, F. Berto","doi":"10.1088/1748-605X/ac62e8","DOIUrl":"https://doi.org/10.1088/1748-605X/ac62e8","url":null,"abstract":"It is very desirable to have good antibacterial properties and mechanical properties at the same time for bone scaffolds. Graphene oxide (GO) can increase the mechanical properties and antibacterial performance, while forsterite (Mg2SiO4) as the matrix can increase forsterite/GO scaffolds’ biological activity for bone tissue engineering. Interconnected porous forsterite scaffolds were developed by space holder processes for bone tissue engineering in this research. The forsterite/GO scaffolds had a porosity of 76%–78% with pore size of 300–450 μm. The mechanism of the mechanical strengthening, antibacterial activity, and cellular function of the forsterite/GO scaffold was evaluated. The findings show that the compressive strength of forsterite/1 wt.% GO scaffold (2.4 ± 0.1 MPa) was significantly increased, in comparison to forsterite scaffolds without GO (1.4 ± 0.1 MPa). Validation of the samples’ bioactivity was attained by forming a hydroxyapatite layer on the forsterite/GO surface within in vitro immersion test. The results of cell viability demonstrated that synthesized forsterite scaffolds with low GO did not show cytotoxicity and enhanced cell proliferation. Antibacterial tests showed that the antibacterial influence of forsterite/GO scaffold was strongly correlated with GO concentration from 0.5 to 2 wt.%. The scaffold encapsulated with 2 wt.% GO had the great antibacterial performance with bacterial inhibition rate around 90%. As results show, the produced forsterite/1 wt.% GO can be an attractive option for bone tissue engineering.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43903186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Three-dimensional culture and chondrogenic differentiation of mesenchymal stem cells in interconnected collagen scaffolds 胶原支架间充质干细胞的三维培养和软骨分化
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-29 DOI: 10.1088/1748-605X/ac61f9
Yan Xie, Linawati Sutrisno, Toru Yoshitomi, N. Kawazoe, Yingnan Yang, Guoping Chen
{"title":"Three-dimensional culture and chondrogenic differentiation of mesenchymal stem cells in interconnected collagen scaffolds","authors":"Yan Xie, Linawati Sutrisno, Toru Yoshitomi, N. Kawazoe, Yingnan Yang, Guoping Chen","doi":"10.1088/1748-605X/ac61f9","DOIUrl":"https://doi.org/10.1088/1748-605X/ac61f9","url":null,"abstract":"Interconnected scaffolds are useful for promoting the chondrogenic differentiation of stem cells. Collagen scaffolds with interconnected pore structures were fabricated with poly(lactic acid-co-glycolic acid) (PLGA) sponge templates. The PLGA-templated collagen scaffolds were used to culture human bone marrow-derived mesenchymal stem cells (hMSCs) to investigate their promotive effect on the chondrogenic differentiation of hMSCs. The cells adhered to the scaffolds with a homogeneous distribution and proliferated with culture time. The expression of chondrogenesis-related genes was upregulated, and abundant cartilaginous matrices were detected. After subcutaneous implantation, the PLGA-templated collagen scaffolds further enhanced the production of cartilaginous matrices and the mechanical properties of the implants. The good interconnectivity of the PLGA-templated collagen scaffolds promoted chondrogenic differentiation. In particular, the collagen scaffolds prepared with large pore-bearing PLGA sponge templates showed the highest promotive effect.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49096267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: biomedical improvement by intermediate hierarchical films 钛表面的仿生TiO2/壳聚糖/透明质酸涂层:中间分层膜的生物医学改善
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-29 DOI: 10.1088/1748-605X/ac61fc
S. Y. Rahnamaee, Shahab Ahmadi Seyedkhani, Aylar Eslami Saed, S. Sadrnezhaad, A. Seza
{"title":"Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: biomedical improvement by intermediate hierarchical films","authors":"S. Y. Rahnamaee, Shahab Ahmadi Seyedkhani, Aylar Eslami Saed, S. Sadrnezhaad, A. Seza","doi":"10.1088/1748-605X/ac61fc","DOIUrl":"https://doi.org/10.1088/1748-605X/ac61fc","url":null,"abstract":"The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating demonstrated superhydrophilicity (θ ≈ 0°) and increased the wettability of the metallic Ti surface by more than 120%. The friction coefficient of all fabricated surfaces was within the range of natural bone’s mechanical behavior. The intermediate HO layer increased the adhesion strength of the HA/CS coating by more than 60%. The HO layer caused the mechanical stability of HA/CS during the 1000 m of friction test. The microhardness of HA/CS (22.5 HV) and micro-HA (25.5 HV) coatings was comparable to that of human bone. A mechanism for improved adhesion strength of HA/CS coatings by intermediate oxide layer was proposed.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42132724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Strontium-loaded titanium implant with rough surface modulates osseointegration by changing sfrp4 in canonical and noncanonical Wnt signaling pathways 表面粗糙的锶负载钛植入物通过改变经典和非经典Wnt信号通路中的sfrp4来调节骨整合
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-29 DOI: 10.1088/1748-605X/ac61fb
Xiaoyi Wang, He Xin, Xiaona Ning, Yubohan Zhang, Fuwei Liu, Zhouyang Zhang, Xuelian Jia, Weiwei Guo, Y. Hong, Wenquan Sui
{"title":"Strontium-loaded titanium implant with rough surface modulates osseointegration by changing sfrp4 in canonical and noncanonical Wnt signaling pathways","authors":"Xiaoyi Wang, He Xin, Xiaona Ning, Yubohan Zhang, Fuwei Liu, Zhouyang Zhang, Xuelian Jia, Weiwei Guo, Y. Hong, Wenquan Sui","doi":"10.1088/1748-605X/ac61fb","DOIUrl":"https://doi.org/10.1088/1748-605X/ac61fb","url":null,"abstract":"A rough morphology and strontium (Sr) can activate the Wnt pathway to regulate bone mesenchymal stem cells (rBMSCs) osteogenic differentiation, but the mechanism remains unclear. We constructed smooth Ti (ST) surfaces, rough Ti (RT) surfaces subjected to hydrofluoric acid etching, strontium-loaded smooth Ti (ST-Sr) surfaces subjected to magnetron sputtering, and rough strontium-loaded Ti (RT-Sr) surfaces. We systematically studied the in vitro osteogenic differentiation of rBMSCs on these four surfaces by alkaline phosphatase measurement, Alizarin Red staining and polymerase chain reaction (PCR). We also investigated whether crosstalk of the canonical and noncanonical Wnt signaling pathways regulated by sfrp4, which is an inhibitor of canonical and noncanonical Wnt, is the underlying mechanism via PCR on rBMSCs in different stages of osteogenic differentiation. We confirmed the effect of sfrp4 through an in vivo sfrp4-siRNA test. The in vitro osteogenic differentiation of rBMSCs decreased in the order RT-Sr, RT, ST-Sr, and ST. Regarding the mechanism, rough morphology and Sr both enhanced the canonical Wnt pathway to promote osseointegration. Additionally, rough morphology can inhibit sfrp4 to activate the noncanonical Wnt pathway, and then, the activated noncanonical Wnt pathway can suppress the canonical Wnt pathway at the early stage of osteogenic differentiation. Sr continuously enhanced sfrp4 to inhibit the canonical Wnt pathway instead of activating the noncanonical Wnt pathway. Interestingly, the effect of rough morphology on sfrp4 changed from inhibition to enhancement, and the enhancing effect of Sr on sfrp4 was gradually attenuated. The results of the in vivo sfrp4-siRNA test showed that osseointegration decreased in the order RT-Sr, RT-Sr-siRNA, and ST. Our results suggest that the lack of sfrp4 could suppress osseointegration, indicating that sfrp4 acts as a crucial regulatory molecule for the canonical and noncanonical Wnt pathways during the response of rBMSCs to rough morphology and Sr.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49310608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unravelling the effects of ibuprofen-acetaminophen infused copper-bioglass towards the creation of root canal sealant 揭示布洛芬-对乙酰氨基酚注入铜生物玻璃对根管密封剂产生的影响
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-08 DOI: 10.1088/1748-605X/ac5b83
C. S, Riju Chandran, Ramya R, D. D., B. S
{"title":"Unravelling the effects of ibuprofen-acetaminophen infused copper-bioglass towards the creation of root canal sealant","authors":"C. S, Riju Chandran, Ramya R, D. D., B. S","doi":"10.1088/1748-605X/ac5b83","DOIUrl":"https://doi.org/10.1088/1748-605X/ac5b83","url":null,"abstract":"Impact towards the tuneable characteristics of bioactive glasses (BAGs) has been explored; as there is no root canal sealant till date with ideal characteristics competent enough to manoeuvre the perplexing root canal architecture. Combeite, calcite and traces of cuprorivaite crystalline phases were validated for material formation, in which Cu 2P (XPS) peak authenticating the presence of copper in bioglass network (Cu-BAG). Spherical and platelet-like morphologies were observed and the grain size of Cu-BAG (∼100 nm) was lesser as compared to BAG (∼1 µm). These particle distributions impacted the porosity, and dominant non-bridging oxygens in Cu-BAG influences ionic dissolution, which subsequently enhanced the mineralization. These bioactive materials were loaded with acetaminophen and ibuprofen, corresponding organic moieties was confirmed through Fourier transform infra-red. These drugs loaded bioactive materials exhibited tremendous anti-inflammatory and anti-microbial behaviour with better sealing ability. Drug loaded bioglass paste filled in biomechanically prepared root canal was estimated for sealing potential, mineralization, micro leakage, and fracture resistance properties. Hydroxyl apatite growth was noted on the sealants, flower like protuberance confirmed the sealing potential of the prepared material. Bioglass exhibited promising characteristics required in a root canal sealant. This investigation is a step further towards tailoring the properties of bioactive materials as promising candidates in root canal obturation and thereof.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41932294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A review: potential application and outlook of photothermal therapy in oral cancer treatment 综述了光热疗法在口腔癌治疗中的潜在应用及展望
IF 4 3区 医学
Biomedical materials Pub Date : 2022-03-02 DOI: 10.1088/1748-605X/ac5a23
Liren Cao, Yongzhi Wu, Yue Shan, Bowen Tan, Jinfeng Liao
{"title":"A review: potential application and outlook of photothermal therapy in oral cancer treatment","authors":"Liren Cao, Yongzhi Wu, Yue Shan, Bowen Tan, Jinfeng Liao","doi":"10.1088/1748-605X/ac5a23","DOIUrl":"https://doi.org/10.1088/1748-605X/ac5a23","url":null,"abstract":"As one of the most common malignant tumors, oral cancer threatens people’s health worldwide. However, traditional therapies, including surgery, radiotherapy, and chemotherapy cannot meet the requirement of cancer cure. Photothermal therapy (PTT) has attracted widespread attentions for its advantages of the noninvasive process, few side effects, and promising tumor ablation. Up to now, three types of photothermal agents (PTAs) have been widely employed in oral cancer therapies, which involve metallic materials, carbon-based materials, and organic materials. Previous research mainly introduced hybrid materials due to benefits from the synergistic effect of multiple functions. In this review, we present the advancement of each type PTAs for oral cancer treatment in recent years. In each part, we introduce the properties and synthesis of each PTA, summarize the current studies, and analyze their potential applications. Furthermore, we discuss the status quo and the deficiencies hindering the clinical application of PTT, based on which gives the perspective of its future developing directions.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44663468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
In vitro and in vivo study of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair 含镁生物活性玻璃纳米粒子修饰明胶骨修复支架的体内外研究
IF 4 3区 医学
Biomedical materials Pub Date : 2022-02-28 DOI: 10.1088/1748-605X/ac5949
Yi Sun, Jie Lin, Leilei Li, K. Jia, Wen Xia, Chao Deng
{"title":"In vitro and in vivo study of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair","authors":"Yi Sun, Jie Lin, Leilei Li, K. Jia, Wen Xia, Chao Deng","doi":"10.1088/1748-605X/ac5949","DOIUrl":"https://doi.org/10.1088/1748-605X/ac5949","url":null,"abstract":"Magnesium containing bioactive glass nanoparticles modified gelatin scaffolds (MBGNs/Gel scaffolds) have shown recently the potential for bone regeneration due to its good biocompatibility, bioresorbability and bioactivity. Nevertheless, its use is limited by its complicated manufacturing process and a relatively expensive price. In this study, MBGNs were prepared by sol–gel process. The MBGNs/Gel was synthesized by a simple immersion method. SEM, transmission electron microscopy and dynamic light scattering analysis showed that the particles had spherical morphology with mean particle size of 100 nm. The MBGNs/Gel scaffolds were observed by SEM. The scaffolds showed connected pore structure with pore size ranging from 100 to 300 μm. SEM images with high magnification showed the existence of MBGNs on the surface of micro-pores. The ion release results revealed the release of Mg, Ca and Si elements from the MBGNs. MTT assay and cytotoxicity studies indicated that, the scaffolds provide a suitable ion related micro-environment for cell attachment and spreading. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results showed the scaffolds could promote the osteogenesis of MC3T3-E1. The in vivo study also showed higher amount of new bone and trabecular bone which indicated excellent bone induction and conduction property of modified scaffolds. So, the developed MBGNs/Gel scaffolds are a potential candidate for bone regeneration applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47610019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Promoting in-vivo bone regeneration using facile engineered load-bearing 3D bioactive scaffold 利用简易工程负重3D生物活性支架促进体内骨再生
IF 4 3区 医学
Biomedical materials Pub Date : 2022-02-25 DOI: 10.1088/1748-605X/ac58d6
Saumya Dash, Pinky, Varun Arora, Kunj Sachdeva, Harshita Sharma, A. Dinda, A. Agrawal, M. Jassal, S. Mohanty
{"title":"Promoting in-vivo bone regeneration using facile engineered load-bearing 3D bioactive scaffold","authors":"Saumya Dash, Pinky, Varun Arora, Kunj Sachdeva, Harshita Sharma, A. Dinda, A. Agrawal, M. Jassal, S. Mohanty","doi":"10.1088/1748-605X/ac58d6","DOIUrl":"https://doi.org/10.1088/1748-605X/ac58d6","url":null,"abstract":"The worldwide incidence of bone disorders has trended steeply upward and is expected to get doubled by 2030. The biological mechanism of bone repair involves both osteoconductivity and osteoinductivity. Despite the self-healing functionality after injury, bone tissue faces a multitude of pathological challenges. Several innovative approaches have been developed to prepare biomaterial-based bone grafts. To design a suitable bone material, the freeze-drying technique has achieved significant importance among the other conventional methods. However, the functionality of the polymeric freeze-dried scaffold in in-vivo osteogenesis is in a nascent stage. In this study facile, freeze-dried, biomaterial-based load-bearing three-dimensional porous composite scaffolds have been prepared. The biocompatible scaffolds have been made by using chitosan (C), polycaprolactone (P), hydroxyapatite (H), glass ionomer (G), and graphene (gr). Scaffolds of eight different groups (C, P, CP, CPH, CPHG, CPHGgr1, CPHGgr2, CPHGgr3) have been designed and characterized to evaluate their applicability in orthopedics. To evaluate the efficacy of the scaffolds a series of physio-chemical, morphological, and in-vitro and in-vivo biological experiments have been performed. From the obtained results it was observed that the CPHGgr1 is the ideal compatible material for Wharton’s jelly-derived mesenchymal stem cells (MSCs) and the blood cells. The in-vitro bone-specific gene expression study revealed that the scaffold assists MSCs osteogenic differentiation. Additionally, the in-vivo study on the mice model was also performed for a period of four and eight weeks. The subcutaneous implantation of the designed scaffolds did not show any altered physiological condition in the animals, which indicated the in-vivo biocompatibility of the designed material. The histopathological study revealed that after eight weeks of implantation, the CPHGgr1 scaffold supported significantly better collagen deposition and calcification. The facile designing of the CPHGgr1 multicomponent nanocomposite provided an osteo-regenerative biomaterial with desired mechanical strength as an ideal regenerative material for cancellous bone tissue regeneration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45238433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy. 用于肿瘤免疫治疗的适体功能化靶向siRNA递送系统。
IF 4 3区 医学
Biomedical materials Pub Date : 2022-02-09 DOI: 10.1088/1748-605X/ac5382
Haiyin Lv, Tengfei Wang, F. Ma, Kunchi Zhang, Tian Gao, R. Pei, Ye Zhang
{"title":"Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy.","authors":"Haiyin Lv, Tengfei Wang, F. Ma, Kunchi Zhang, Tian Gao, R. Pei, Ye Zhang","doi":"10.1088/1748-605X/ac5382","DOIUrl":"https://doi.org/10.1088/1748-605X/ac5382","url":null,"abstract":"Programmed death ligand 1 (PD-L1) overexpressed on the surface of tumor cells is one of the reasons for tumor immune escape. Reducing PD-L1 expression has been proved to be an effective strategy to facilitate immune system activation and inhibit tumor progression. RNA interference (RNAi) is a promising technology for gene regulation in tumor therapy. In this study, we constructed a targeted siRNA delivery system NPs@apt to transfect PD-L1 siRNA into human non-small-cell lung carcinoma cell line (A549) for inhibiting tumor immune evasion. NPs@apt was prepared by compressing PD-L1 siRNA with cationic Lipofectamine 2000, fusing with erythrocyte membrane-derived nanovesicles, and further modifying with targeting AS1411 aptamer. The introduction of erythrocyte membrane endows the siRNA delivery system with lower cytotoxicity and the ability to escape from the phagocytosis of macrophages. The stability of NPs@apt and the protection to loaded siRNA were confirmed. In vitro studies after NPs@apt treatment demonstrated that PD-L1 siRNA was selectively delivered into A549 cells, and further resulted in PD-L1 gene knockdown, T cell activation and tumor cell growth inhibition. This study offers an alternative strategy for specific siRNA transfection for improving anti-tumor immunity.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42344178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信