Biometrika最新文献

筛选
英文 中文
Maximum Likelihood Estimation for Semiparametric Regression Models with Interval-Censored Multistate Data 区间截尾多态数据半参数回归模型的极大似然估计
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-24 DOI: 10.1093/biomet/asad073
Yu Gu, Donglin Zeng, Gerardo Heiss, D Y Lin
{"title":"Maximum Likelihood Estimation for Semiparametric Regression Models with Interval-Censored Multistate Data","authors":"Yu Gu, Donglin Zeng, Gerardo Heiss, D Y Lin","doi":"10.1093/biomet/asad073","DOIUrl":"https://doi.org/10.1093/biomet/asad073","url":null,"abstract":"Summary Interval-censored multistate data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We relate potentially time-dependent covariates to multistate processes through semiparametric proportional intensity models with random effects. We study nonparametric maximum likelihood estimation under general interval censoring and develop a stable expectation-maximization algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On varimax asymptotics in network models and spectral methods for dimensionality reduction 网络模型的变极大渐近性及降维的谱方法
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-20 DOI: 10.1093/biomet/asad061
J Cape
{"title":"On varimax asymptotics in network models and spectral methods for dimensionality reduction","authors":"J Cape","doi":"10.1093/biomet/asad061","DOIUrl":"https://doi.org/10.1093/biomet/asad061","url":null,"abstract":"Summary Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H.Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this new-found understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Second term improvement to generalised linear mixed model asymptotics 广义线性混合模型渐近性的二阶改进
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-16 DOI: 10.1093/biomet/asad072
Luca Maestrini, Aishwarya Bhaskaran, Matt P Wand
{"title":"Second term improvement to generalised linear mixed model asymptotics","authors":"Luca Maestrini, Aishwarya Bhaskaran, Matt P Wand","doi":"10.1093/biomet/asad072","DOIUrl":"https://doi.org/10.1093/biomet/asad072","url":null,"abstract":"Summary A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m denotes the number of groups and n is the average within-group sample size then the asymptotic variances have orders m − 1 and (mn)−1, depending on the parameter. We extend this theory to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of statistical inference and planning are consequences of our theory.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion of 'Statistical inference for streamed longitudinal data'. 关于“纵向流数据的统计推断”的讨论。
IF 2.4 2区 数学
Biometrika Pub Date : 2023-11-15 eCollection Date: 2023-12-01 DOI: 10.1093/biomet/asad043
Yang Ning, Jingyi Duan
{"title":"Discussion of 'Statistical inference for streamed longitudinal data'.","authors":"Yang Ning, Jingyi Duan","doi":"10.1093/biomet/asad043","DOIUrl":"10.1093/biomet/asad043","url":null,"abstract":"","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10651177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138046147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projective Independence Tests in High Dimensions: the Curses and the Cures 高维投射独立性检验:弊与弊
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-15 DOI: 10.1093/biomet/asad070
Yaowu Zhang, Liping Zhu
{"title":"Projective Independence Tests in High Dimensions: the Curses and the Cures","authors":"Yaowu Zhang, Liping Zhu","doi":"10.1093/biomet/asad070","DOIUrl":"https://doi.org/10.1093/biomet/asad070","url":null,"abstract":"Summary Testing independence between high dimensional random vectors is fundamentally different from testing independence between univariate random variables. Take the projection correlation as an example. It suffers from at least three issues. First, it has a high computational complexity of O{n3 (p + q)}, where n, p and q are the respective sample size and dimensions of the random vectors. This limits its usefulness substantially when n is extremely large. Second, the asymptotic null distribution of the projection correlation test is rarely tractable. Therefore, random permutations are often suggested to approximate the asymptotic null distribution. This further increases the complexity of implementing independence tests. Last, the power performance of the projection correlation test deteriorates in high dimensions. To address these issues, we improve the projection correlation through a modified weight function, which reduces the complexity to O{n2 (p + q)}. We estimate the improved projection correlation with U-statistic theory. More importantly, its asymptotic null distribution is standard normal, thanks to the high dimensions of random vectors. This expedites the implementation of independence tests substantially. To enhance power performance in high dimensions, we introduce a cross-validation procedure which incorporates feature screening with the projection correlation test. The implementation efficacy and power enhancement are confirmed through extensive numerical studies.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Discussion of ‘Statistical inference for streamed longitudinal data’ 关于 "流式纵向数据的统计推断 "的讨论
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-15 DOI: 10.1093/biomet/asad035
J. Wang, H. Wang, K. Chen
{"title":"Discussion of ‘Statistical inference for streamed longitudinal data’","authors":"J. Wang, H. Wang, K. Chen","doi":"10.1093/biomet/asad035","DOIUrl":"https://doi.org/10.1093/biomet/asad035","url":null,"abstract":"","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139274543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion of ‘Statistical inference for streamed longitudinal data’ 关于 "流式纵向数据的统计推断 "的讨论
IF 2.7 2区 数学
Biometrika Pub Date : 2023-11-15 DOI: 10.1093/biomet/asad034
Peter X-K Song, Ling Zhou
{"title":"Discussion of ‘Statistical inference for streamed longitudinal data’","authors":"Peter X-K Song, Ling Zhou","doi":"10.1093/biomet/asad034","DOIUrl":"https://doi.org/10.1093/biomet/asad034","url":null,"abstract":"","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139275224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized kernel two-sample tests 广义核双样本测试
2区 数学
Biometrika Pub Date : 2023-11-14 DOI: 10.1093/biomet/asad068
Hoseung Song, Hao Chen
{"title":"Generalized kernel two-sample tests","authors":"Hoseung Song, Hao Chen","doi":"10.1093/biomet/asad068","DOIUrl":"https://doi.org/10.1093/biomet/asad068","url":null,"abstract":"Summary Kernel two-sample tests have been widely used for multivariate data to test equality of distributions. However, existing tests based on mapping distributions into a reproducing kernel Hilbert space mainly target specific alternatives and do not work well for some scenarios when the dimension of the data is moderate to high due to the curse of dimensionality. We propose a new test statistic that makes use of a common pattern under moderate and high dimensions and achieves substantial power improvements over existing kernel two-sample tests for a wide range of alternatives. We also propose alternative testing procedures that maintain high power with low computational cost, offering easy off-the-shelf tools for large datasets. The new approaches are compared to other state-of-the-art tests under various settings and show good performance. We showcase the new approaches through two applications: the comparison of musks and non-musks using the shape of molecules, and the comparison of taxi trips starting from John F. Kennedy airport in consecutive months. All proposed methods are implemented in an R package kerTests.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Testing Serial Independence of Object-Valued Time Series 对象值时间序列序列独立性的检验
2区 数学
Biometrika Pub Date : 2023-11-11 DOI: 10.1093/biomet/asad069
Feiyu Jiang, Hanjia Gao, Xiaofeng Shao
{"title":"Testing Serial Independence of Object-Valued Time Series","authors":"Feiyu Jiang, Hanjia Gao, Xiaofeng Shao","doi":"10.1093/biomet/asad069","DOIUrl":"https://doi.org/10.1093/biomet/asad069","url":null,"abstract":"Summary We propose a novel method for testing serial independence of object-valued time series in metric spaces, which is more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to auto-distance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cramér von-Mises type test statistic. New theoretical arguments are developed to establish the asymptotic behaviour of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the nonpivotal limiting null distribution. Extensive numerical simulations and two real data applications on cumulative intraday returns and human mortality data are conducted to illustrate the effectiveness and versatility of our proposed test.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135087094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the optimality of score-driven models 分数驱动模型的最优性
2区 数学
Biometrika Pub Date : 2023-11-09 DOI: 10.1093/biomet/asad067
P Gorgi, C S A Lauria, A Luati
{"title":"On the optimality of score-driven models","authors":"P Gorgi, C S A Lauria, A Luati","doi":"10.1093/biomet/asad067","DOIUrl":"https://doi.org/10.1093/biomet/asad067","url":null,"abstract":"Summary Score-driven models have been recently introduced as a general framework to specify time-varying parameters of conditional densities. %The underlying idea is to specify a time-varying parameter as an autoregressive process with innovation given by the score of the associated log-likelihood. The score enjoys stochastic properties that make these models easy to implement and convenient to apply in several contexts, ranging from biostatistics to finance. Score-driven parameter updates have been shown to be optimal in terms of locally reducing a local version of the Kullback–Leibler divergence between the true conditional density and the postulated density of the model. A key limitation of such an optimality property is that it holds only locally both in the parameter space and sample space, yielding to a definition of local Kullback–Leibler divergence that is in fact not a divergence measure. The current paper shows that score-driven updates satisfy stronger optimality properties that are based on a global definition of Kullback–Leibler divergence. In particular, it is shown that score-driven updates reduce the distance between the expected updated parameter and the pseudo-true parameter. Furthermore, depending on the conditional density and the scaling of the score, the optimality result can hold globally over the parameter space, which can be viewed as a generalization of the monotonicity property of the stochastic gradient descent scheme. Several examples illustrate how the results derived in the paper apply to specific models under different easy-to-check assumptions, and provide a formal method to select the link-function and the scaling of the score.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信