网络模型的变极大渐近性及降维的谱方法

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-11-20 DOI:10.1093/biomet/asad061
J Cape
{"title":"网络模型的变极大渐近性及降维的谱方法","authors":"J Cape","doi":"10.1093/biomet/asad061","DOIUrl":null,"url":null,"abstract":"Summary Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H.Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this new-found understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"19 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On varimax asymptotics in network models and spectral methods for dimensionality reduction\",\"authors\":\"J Cape\",\"doi\":\"10.1093/biomet/asad061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H.Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this new-found understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"19 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad061\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad061","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自H.Kaiser引入变异因子旋转以来,虽然在心理学和统计学从业者中很受欢迎,但历史上一直受到一些理论家和数理统计学家的怀疑和怀疑。现在,K. Rohe和M. Zeng的工作提供了新的、基本的见解:当与基于谱的矩阵截断相结合以降低维数时,可变旋转可证明在某些类别的潜在变量模型中执行统计估计。我们通过进一步发展网络分析和基于入口矩阵摄动分析的光谱方法,建立对变差旋转的新理解。具体地说,本文建立了在某些潜在空间随机图模型中表示低维节点嵌入的变大变换欧几里得点云中向量的渐近多元正态性。我们讨论了相关的概念,包括网络稀疏性、数据去噪和矩阵秩在潜在变量参数化中的作用。总的来说,这些发现,在经典和当代多元分析的融合,加强了基于矩阵分解技术的方法和推理程序。数值例子说明了我们的发现并补充了我们的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On varimax asymptotics in network models and spectral methods for dimensionality reduction
Summary Varimax factor rotations, while popular among practitioners in psychology and statistics since being introduced by H.Kaiser, have historically been viewed with skepticism and suspicion by some theoreticians and mathematical statisticians. Now, work by K. Rohe and M. Zeng provides new, fundamental insight: varimax rotations provably perform statistical estimation in certain classes of latent variable models when paired with spectral-based matrix truncations for dimensionality reduction. We build on this new-found understanding of varimax rotations by developing further connections to network analysis and spectral methods rooted in entrywise matrix perturbation analysis. Concretely, this paper establishes the asymptotic multivariate normality of vectors in varimax-transformed Euclidean point clouds that represent low-dimensional node embeddings in certain latent space random graph models. We address related concepts including network sparsity, data denoising, and the role of matrix rank in latent variable parameterizations. Collectively, these findings, at the confluence of classical and contemporary multivariate analysis, reinforce methodology and inference procedures grounded in matrix factorization-based techniques. Numerical examples illustrate our findings and supplement our discussion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信