{"title":"广义线性混合模型渐近性的二阶改进","authors":"Luca Maestrini, Aishwarya Bhaskaran, Matt P Wand","doi":"10.1093/biomet/asad072","DOIUrl":null,"url":null,"abstract":"Summary A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m denotes the number of groups and n is the average within-group sample size then the asymptotic variances have orders m − 1 and (mn)−1, depending on the parameter. We extend this theory to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of statistical inference and planning are consequences of our theory.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"9 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second term improvement to generalised linear mixed model asymptotics\",\"authors\":\"Luca Maestrini, Aishwarya Bhaskaran, Matt P Wand\",\"doi\":\"10.1093/biomet/asad072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m denotes the number of groups and n is the average within-group sample size then the asymptotic variances have orders m − 1 and (mn)−1, depending on the parameter. We extend this theory to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of statistical inference and planning are consequences of our theory.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Second term improvement to generalised linear mixed model asymptotics
Summary A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m denotes the number of groups and n is the average within-group sample size then the asymptotic variances have orders m − 1 and (mn)−1, depending on the parameter. We extend this theory to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of statistical inference and planning are consequences of our theory.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.