Xudong Lü , Xiyu Wei , Chenyu Wang , Mengjia Tang , Yuanyuan Jin , Shuai Fan , Zhaoyong Yang
{"title":"Identification of the therapeutic potential of novel TIGIT/PVR interaction blockers based advanced computational techniques and experimental validation","authors":"Xudong Lü , Xiyu Wei , Chenyu Wang , Mengjia Tang , Yuanyuan Jin , Shuai Fan , Zhaoyong Yang","doi":"10.1016/j.bpc.2024.107383","DOIUrl":"10.1016/j.bpc.2024.107383","url":null,"abstract":"<div><div>The inhibition of the TIGIT/PVR interaction demonstrates considerable anticancer properties by enhancing the cytotoxic activity of natural killer (NK) and CD8+ T cells. However, the development of small molecule inhibitors that target TIGIT is currently limited. In this study, small molecules with the capacity to bind TIGIT and block the TIGIT/PVR interaction were screened through an advanced computational process, subsequently confirmed by blocking assays. Combined machine learning model XGBOOST and centroid-based molecular docking were employed to expeditiously exclude negative molecules, thereby reducing the chemical space. Subsequently, a blockade assay targeting the TIGIT/PVR interaction was conducted on 14 candidate molecules along with positive control, wherein compound MCULE-5547257859 exhibited the most potent inhibitory effect. Molecular dynamics simulations and binding free energy analyses revealed that compound MCULE-5547257859 possesses a thermodynamically stable conformation, indicative of a stronger binding affinity to TIGIT. In conclusion, our investigation has delineated that compound MCULE-5547257859 effectively impedes the TIGIT/PVR interaction, thereby offering a novel therapeutic modality for oncology.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107383"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural dynamics of a designed peptide pore under an external electric field","authors":"Ai Niitsu , Jaewoon Jung , Yuji Sugita","doi":"10.1016/j.bpc.2024.107380","DOIUrl":"10.1016/j.bpc.2024.107380","url":null,"abstract":"<div><div>Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data. In this study, we implemented a uniform external electric field function in the GENESIS MD simulation package to investigate the conformational dynamics of de novo-designed peptide pores. Our simulations and single-channel current recording experiments demonstrate that both charged amino acid residues in the N-terminal sequence of the peptide and the membrane potential are crucial for the structural stability and dynamics of the peptide pores. This suggests that MD simulations with an external electric field enable more accurate screening of designed proteins functioning under membrane potentials, which will ultimately contribute to a deeper understanding of voltage-sensitive membrane proteins from a bottom-up synthetic biology perspective.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107380"},"PeriodicalIF":3.3,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein","authors":"Almas Akhtar, Payal Singh, Nikita Admane, Abhinav Grover","doi":"10.1016/j.bpc.2024.107379","DOIUrl":"10.1016/j.bpc.2024.107379","url":null,"abstract":"<div><div>Parkinson's disease (PD) is a neurodegenerative disorder involving the progressive loss of dopaminergic neurons in the substantia nigra pars compacta triggered by the accumulation of amyloid aggregates of α-synuclein protein. This study investigates the potential of Salvianolic Acid B (Sal<img>B), a water-soluble polyphenol derived from <em>Salvia miltiorrhiza Bunge</em>, in modulating the aggregation of the A53T mutant of α-synuclein (A53T Syn). This mutation is associated with rapid aggregation and a higher rate of protofibril formation in early-onset familial PD. Computational and experimental approaches demonstrated Sal-B effectively prevents the amyloid fibrillation of A53T Syn by interacting with the N-terminal region and NAC domain. Sal-B particularly associates with the KTKEGV motif and NACore segment of A53T Syn by hydrophobic and hydrogen bonding interactions. Replica exchange molecular dynamics (REMD) simulations indicated that Sal-B reduces intramolecular hydrogen bonding and structural transitions into β-sheet rich conformations, thereby lowering the aggregation propensity of A53T Syn. Systematic analysis conducted using biophysical techniques and high-end microscopy has demonstrated significant inhibition in the amyloid transformation of A53T Syn corroborated by a 92 % decrease in ThT maxima at 100 μM Sal-B concentration and microscopic techniques validated the absence of mature fibrillar amyloids. DLS data revealed heterogeneous particle sizes, supporting the formation of smaller unstructured aggregates. These findings underscore Sal-B as a promising therapeutic candidate for PD and related synucleinopathies, warranting further investigation in cellular and animal models to advance potential treatments and early intervention strategies.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107379"},"PeriodicalIF":3.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander S. Tatikolov , Pavel G. Pronkin , Ina G. Panova
{"title":"Bilirubin: Photophysical and photochemical properties, phototherapy, analytical methods of measurement. A short review","authors":"Alexander S. Tatikolov , Pavel G. Pronkin , Ina G. Panova","doi":"10.1016/j.bpc.2024.107378","DOIUrl":"10.1016/j.bpc.2024.107378","url":null,"abstract":"<div><div>Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body. Bilirubin exhibits photochemical activity, which has been the subject of numerous studies up to now. Such studies are relevant because the bilirubin photochemistry provides the basis for bilirubin removing in phototherapy of neonatal jaundice (neonatal hyperbilirubinemia) and for some therapeutic applications. Furthermore, it can model several elementary processes of molecular photonics. In particular, the bilirubin molecule is capable of ultrafast <em>Z</em>-<em>E</em> photoisomerization and contains two almost identical dipyrromethenone chromophores capable of exciton coupling. The present review considers the data on the photophysical and photochemical properties of bilirubin and ultrafast routes of its phototransformations, as well as its photochemical reactions in phototherapy of neonatal hyperbilirubinemia and the ways to decrease the possible adverse effects of the phototherapy. The main analytical methods of bilirubin measurement in biological systems are also viewed.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107378"},"PeriodicalIF":3.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery","authors":"Kisalay Jha , Puja Jaishwal , Thakur Prasad Yadav , Satarudra Prakash Singh","doi":"10.1016/j.bpc.2024.107375","DOIUrl":"10.1016/j.bpc.2024.107375","url":null,"abstract":"<div><div>Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20–200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107375"},"PeriodicalIF":3.3,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuan Sun , Sanying Wang , Jing Zhang , Xuqiang Zhou , Tianjun Zhu , Genxiang Mao
{"title":"Fifty-hertz magnetic fields induce DNA damage through activating mPTP associated mitochondrial permeability transition in senescent human fetal lung fibroblasts","authors":"Chuan Sun , Sanying Wang , Jing Zhang , Xuqiang Zhou , Tianjun Zhu , Genxiang Mao","doi":"10.1016/j.bpc.2024.107367","DOIUrl":"10.1016/j.bpc.2024.107367","url":null,"abstract":"<div><div>With the rapid development and using of electromagnetic technology, artificial electromagnetic fields (EMFs) have become an emerging environmental factor in our daily life. Extremely-low-frequency (ELF) magnetic fields (MFs), generally generated by power lines and various electric equipment, is one of the most common EMFs in the environment which were concerned for the potential impact on human health. Base on limited evidence, ELF-MFs have been classified as possible carcinogen to human by International Agency for Research on Cancer (IARC), but the mechanisms have not been fully elucidated. Senescent cells are a group of special cells, characterized by cell cycle arrest, senescence-associated secretory phenotype (SASP), accumulation of macromolecular damage, and metabolic disturbance, play important role in fetal development, tissue aging, and even carcinogenesis. Thus, EMFs may promote carcinogenesis by affecting senescent cells, however, there are few studies. In this study, we found that exposure to 50 Hz MFs at 1.0 mT for 24 h could induce significant DNA damage in senescent but not non-senescent human fetal lung fibroblast suggested that senescent cells are more sensitive to 50 Hz MFs on DNA damage, and further results revealed that reactive oxygen species (ROS) generation mediated by mitochondrial permeability transition pore (mPTP) activation play critical role in this process. Our results indicated that cellular senescence can lead to cell sensitivity to the DNA damage effect of 50 Hz MFs, however, whether this play important role in mediating the carcinogenesis of EMFs await further study.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107367"},"PeriodicalIF":3.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erik Strandberg , Patrick Horten , David Bentz , Parvesh Wadhwani , Jochen Bürck , Anne S. Ulrich
{"title":"Trp residues near peptide termini enhance the membranolytic activity of cationic amphipathic α-helices","authors":"Erik Strandberg , Patrick Horten , David Bentz , Parvesh Wadhwani , Jochen Bürck , Anne S. Ulrich","doi":"10.1016/j.bpc.2024.107365","DOIUrl":"10.1016/j.bpc.2024.107365","url":null,"abstract":"<div><div>KIA peptides were designed as a series of cationic antimicrobial agents of different lengths, based on the repetitive motif [KIAGKIA]. As amphiphilic helices, they tend to bind initially to the surface of lipid membranes. Depending on the conditions, they are proposed to flip, insert and form toroidal pores, such that the peptides are aligned in a transmembrane orientation. Tryptophan residues are often found near the ends of transmembrane helices, anchoring them to the amphiphilic bilayer interfaces. Hence, we introduced Trp residues near one or both termini of KIA peptides with lengths of 14–24 amino acids. Our hypothesis was that if Trp residues can stabilize the transmembrane orientation, then these KIA peptides will exhibit an increased propensity to form pores, with increased membranolytic activity. Using solid-state <sup>15</sup>N NMR, we found that peptides with Trp near the ends are indeed more likely to be flipped into a transmembrane orientation, especially short peptides. Short KIA peptides also exhibited higher antimicrobial activity when modified with Trp, while longer peptides showed similar activities with and without Trp. The hemolytic activity of KIA peptides of all lengths was higher with Trp near the ends. Vesicle leakage was also increased (sometimes more than 10-fold) for the Trp-mutants, especially in thicker membranes. Higher functionality of amphiphilic helices may thus be achieved in general by exploiting the anchoring effect of Trp. These results demonstrate that the incorporation of Trp increases membranolytic activities (vesicle leakage, hemolysis and antimicrobial activity), in a way compatible with a transmembrane pore model of peptide activity.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107365"},"PeriodicalIF":3.3,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The swelling behaviour of hair studied through the structural change of keratin protein during the permanent waving treatment","authors":"Takayuki Togashi , Maako Tabata , Akimasa Mochizuki , Jiro Tanaka , Kaori Wada , Yoshio Muroga , Hiroki Ikake","doi":"10.1016/j.bpc.2024.107364","DOIUrl":"10.1016/j.bpc.2024.107364","url":null,"abstract":"<div><div>Filament of human hair is formed from <em>α</em>-keratin protein and its physical property is predominantly dominated by the structure of microfibril (also known as intermediate filaments (IF)). It is known that human hair is swollen by permanent waving (pw) treatment which consists of the reducing process and following oxidizing process, but a detail in the swelling behaviour remains still unclarified. The present work was devoted to the analysis of the swelling behaviour of hair through the structural change of IF during pw treatment, where 1.0 mol/L ammonium thioglycolate solution (pH 9.25) was employed as reducing reagent. The structure of IF was represented in terms of its microstructure, which is given by <em>α</em>-helix content in keratin chain, and its macrostructure, which is given by alignment of IF along human hair axis, and the structures were studied by SAXS and CP/MAS <sup>13</sup>C NMR and others. It is shown that the microstructure and macrostructure of IF simultaneously start to change at an initial stage of the pw treatment without any induction period and both structures are sufficiently swollen at that stage. Furthermore, it is shown that the microstructure and macrostructure of IF is partly destructed by reducing treatment, but the destructed structures are considerably restored by following oxidizing treatment.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"Article 107364"},"PeriodicalIF":3.3,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiongpiao Wei , Min Li , Yuanbiao Tu , Linxiao Wang
{"title":"ROC-guided virtual screening, molecular dynamics simulation, and bioactivity validation assessment Z195914464 as a 3CL Mpro inhibitor","authors":"Xiongpiao Wei , Min Li , Yuanbiao Tu , Linxiao Wang","doi":"10.1016/j.bpc.2024.107357","DOIUrl":"10.1016/j.bpc.2024.107357","url":null,"abstract":"<div><div>Discovering novel class anti-SARS-CoV-2 compounds with novel backbones is essential for preventing and controlling SARS-CoV-2 transmission, which poses a substantial threat to the health and social sustainable development of the global population because of its high pathogenicity and high transmissibility. Although the potential mutation of SARS-CoV-2 might diminish the therapeutic efficacy of drugs, 3CL Mpro is the target highly conservative in contrast with other targets. It is an essential enzyme for coronavirus replication. Based on this, this study utilized the drug discovery strategy of Knime molecular filtering framework, ROC-guided virtual screening, clustering analysis, binding mode analysis, and activity evaluation approaches to identify compound <strong>Z195914464</strong> (IC<sub>50</sub>: 7.19 μM) is a novel class inhibitor of anti-SARS-CoV-2 against the 3CL Mpro target. In addition, based on molecular dynamics simulations and MMPBSA analyses, discovered that compound <strong>Z195914464</strong> can interact with more key residues and lower bonding energies, which explains why it exhibited more activity than the other three compounds. In summary, this study developed a method for the rapid and accurate discovery of active compounds and can also be applied in the discovery of active compounds in other targets.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"317 ","pages":"Article 107357"},"PeriodicalIF":3.3,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalyan Kumar Banerjee, Pabitra Maity, Surajit Das, Sanat Karmakar
{"title":"Cholesterol modulates the interaction of sodium salt with negatively charged phospholipid membrane","authors":"Kalyan Kumar Banerjee, Pabitra Maity, Surajit Das, Sanat Karmakar","doi":"10.1016/j.bpc.2024.107354","DOIUrl":"10.1016/j.bpc.2024.107354","url":null,"abstract":"<div><div>We present a systematic study on how alkali metal salts, like NaCl and NaI, affect negatively charged phospholipid vesicles using a range of experimental methods. Our goal was to find out how chain saturation and cholesterol affect the interaction between the ions and the membrane. An isothermal titration calorimetry study on large unilamellar vesicles made from dimyristoyl phosphatidylcholine (DMPC) revealed that Na<sup>+</sup> shows higher binding affinity to the gel phase at 15 °C compared to the fluid phase at 30 °C. Further, cations also show stronger affinity to the membrane in the fluid composed of saturated lipids than that of unsaturated lipids. The binding affinity of Na + with anionic vesicles prepared from a mixture of DMPC and DMPG was found to decrease significantly with increasing cholesterol as well as salt concentrations, as revealed by the zeta potential study. Besides the binding constant, the Gouy Chapman theory based on the electrostatic double layer shows that cholesterol reduces the surface charge density without altering the significant area per molecule. Further, the effect of counterions was investigated using fluorescence spectroscopy of an environment-sensitive lipophilic dye, nile red. Although cholesterol alters the emission properties of nile red significantly, there is no significant change in the presence of ions. This result suggests that anions do not bind significantly to anionic vesicles. The main striking feature of the ion-membrane interaction in the presence of cholesterol is that membranes with saturated lipids exhibit a completely opposite trend from membranes with unsaturated lipids.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"317 ","pages":"Article 107354"},"PeriodicalIF":3.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}