Interaction of Myrsinoic acid a with biomembrane models: Differential effects on DPPC and DPPS properties revealed by surface rheology and vibrational spectroscopy

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ana Gabrieli A. dos Santos, Fernando Cassas, Kevin Figueiredo dos Santos, Livia Soman de Medeiros, Thiago André Moura Veiga, Luciano Caseli
{"title":"Interaction of Myrsinoic acid a with biomembrane models: Differential effects on DPPC and DPPS properties revealed by surface rheology and vibrational spectroscopy","authors":"Ana Gabrieli A. dos Santos,&nbsp;Fernando Cassas,&nbsp;Kevin Figueiredo dos Santos,&nbsp;Livia Soman de Medeiros,&nbsp;Thiago André Moura Veiga,&nbsp;Luciano Caseli","doi":"10.1016/j.bpc.2025.107439","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the interactions of Myrsinoic acid A, a natural compound with reported anti-inflammatory and antitumor properties, with lipid monolayers composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS). Utilizing tensiometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), Brewster Angle Microscopy (BAM), and surface rheology, we analyzed how Myrsinoic acid A affects the structural and mechanical properties of these lipid systems. The PM-IRRAS spectra revealed that Myrsinoic acid A induced disorder in the DPPC monolayer, shifting CH₂ asymmetric stretching peaks and decreasing packing order, while DPPS remained structurally stable. Surface rheology measurements showed reduced elasticity in both lipids, with differential effects on viscosity: a decrease for DPPC and an increase for DPPS, indicating varied molecular interactions. BAM images confirmed that DPPC maintained a homogeneous morphology, while DPPS displayed aggregate formation, suggesting distinct lipid-drug interactions. These findings highlight the importance of lipid composition in modulating the effects of Myrsinoic acid A on membrane properties, providing insights into its potential therapeutic applications in targeting tumorigenic versus non-tumorigenic cells.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"322 ","pages":"Article 107439"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000511","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the interactions of Myrsinoic acid A, a natural compound with reported anti-inflammatory and antitumor properties, with lipid monolayers composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS). Utilizing tensiometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), Brewster Angle Microscopy (BAM), and surface rheology, we analyzed how Myrsinoic acid A affects the structural and mechanical properties of these lipid systems. The PM-IRRAS spectra revealed that Myrsinoic acid A induced disorder in the DPPC monolayer, shifting CH₂ asymmetric stretching peaks and decreasing packing order, while DPPS remained structurally stable. Surface rheology measurements showed reduced elasticity in both lipids, with differential effects on viscosity: a decrease for DPPC and an increase for DPPS, indicating varied molecular interactions. BAM images confirmed that DPPC maintained a homogeneous morphology, while DPPS displayed aggregate formation, suggesting distinct lipid-drug interactions. These findings highlight the importance of lipid composition in modulating the effects of Myrsinoic acid A on membrane properties, providing insights into its potential therapeutic applications in targeting tumorigenic versus non-tumorigenic cells.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信