{"title":"Biophysical properties of the voltage gated proton channel H(V)1.","authors":"Boris Musset, Thomas Decoursey","doi":"10.1002/wmts.55","DOIUrl":"https://doi.org/10.1002/wmts.55","url":null,"abstract":"<p><p>The biophysical properties of the voltage gated proton channel (H(V)1) are the key elements of its physiological function. The voltage gated proton channel is a unique molecule that in contrast to all other ion channels is exclusively selective for protons. Alone among proton channels, it has voltage and time dependent gating like other \"classical\" ion channels. H(V)1 is furthermore a sensor for the pH in the cell and the surrounding media. Its voltage dependence is strictly coupled to the pH gradient across the membrane. This regulation restricts opening of the channel to specific voltages at any given pH gradient, therefore allowing H(V)1 to perform its physiological task in the tissue it is expressed in. For H(V)1 there is no known blocker. The most potent channel inhibitor is zinc (Zn(2+)) which prevents channel opening. An additional characteristic of H(V)1 is its strong temperature dependence of both gating and conductance. In contrast to single-file water filled pores like the gramicidin channel, H(V)1 exhibits pronounced deuterium effects and temperature effects on conduction, consistent with a different conduction mechanism than other ion channels. These properties may be explained by the recent identification of an aspartate in the pore of H(V)1 that is essential to its proton selectivity.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 5","pages":"605-620"},"PeriodicalIF":0.0,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.55","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30964669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Function of Proton Channels in Lung Epithelia.","authors":"Horst Fischer","doi":"10.1002/wmts.17","DOIUrl":"https://doi.org/10.1002/wmts.17","url":null,"abstract":"<p><p>The properties of the voltage-dependent H(+) channel have been studied in lung epithelial cells for many years, and recently HVCN1 mRNA expression has been linked directly to H(+) channel function in lung epithelium. The H(+) channel is activated by strong membrane depolarization, intracellular acidity, or extracellular alkalinity. Early on it was noted that these are surprising physiological channel characteristics when considering that lung epithelial cells have rather stable membrane potentials and a well pH-buffered intracellular milieu. This raised the question under which conditions the H(+) channel is active in lung epithelium and what is its physiological function there. Current understanding of the HVCN1 H(+) channel in lung epithelial acid secretion, its activation by an alkaline mucosal extracellular pH, and its role in the regulation of the mucosal pH of the lung has resulted in a model of mucosal pH regulation based on the parallel function of the HVCN1 H(+) channel and the CFTR HCO(3) (-) channel, which suggests that HVCN1 is a critical factor that maintains a neutral surface pH in the lung.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 3","pages":"247-258"},"PeriodicalIF":0.0,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.17","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30664230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"mGlu receptors and drug addiction.","authors":"Richard M Cleva, M Foster Olive","doi":"10.1002/wmts.18","DOIUrl":"https://doi.org/10.1002/wmts.18","url":null,"abstract":"<p><p>Historically, brain catecholamine systems have been the primary focus of studies examining the neural substrates of drug addiction. In the past two decades, however, a wealth of evidence has accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors as well as long-term neuroplasticity associated with chronic drug use. As a result, there has been increased interest in developing glutamate-based therapies for the treatment of addictive disorders. Metabotropic glutamate (mGlu) receptors are classified into subcategories designated as Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3), and Group III (mGlu4, mGlu6, mGlu7, and mGlu8), and have received a great deal of attention due to their mediation of slower modulatory excitatory neurotransmission. Pharmacological ligands targeting these receptors have demonstrated reduced incidences of excitotoxicity or severe adverse side effects as compared to those targeting ionotropic glutamate (iGlu) receptors. Behavioral genetic and pharmacological studies have explored the role of individual mGlu receptor subtypes in regulating various addiction-related behaviours and several mGlu receptor ligands have been the subject of clinical testing for other medical conditions.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 3","pages":"281-295"},"PeriodicalIF":0.0,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.18","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30664231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michel Fausther, Emmanuel Gonzales, Jonathan A Dranoff
{"title":"Role of purinergic P2X receptors in the control of liver homeostasis.","authors":"Michel Fausther, Emmanuel Gonzales, Jonathan A Dranoff","doi":"10.1002/wmts.32","DOIUrl":"https://doi.org/10.1002/wmts.32","url":null,"abstract":"<p><p>It is now accepted that extracellular ATP and other nucleotides are potent signaling molecules, akin to neurotransmitters, hormones and lipid mediators. In the liver, several clues support a significant role for extracellular ATP-induced signaling pathways in the control of tissue homeostasis. First, ATP and other nucleotides are physiologically detected in extracellular fluids within the liver, including sinusoidal blood and intraductular bile, in various mammalian species including human and rodents. Moreover, finely tuned mechanisms of ATP release by different liver cell types have been described, under physiological cellular changes. In addition, most hepatic cells constitutively express, at the membrane level, several ATP-metabolizing ectoenzymes and ATP-sensitive receptors that modulate and transduce these mediator signals respectively. Finally, hepatic cells also express numerous membrane transporters that actively contribute to purinergic salvage pathways. Once released in the extracellular medium, unmetabolised ATP molecules can bind to purinergic P2X and P2Y receptors, and subsequently trigger various intracellular signal transduction pathways collectively referred to as purinergic signaling. In the liver, purinergic signaling has been shown to regulate key basic cellular functions, such as glucose/lipid metabolism, protein synthesis and ionic secretion, and homeostatic processes, such as cell cycle, inflammatory response and immunity. Whilst the functional relevance of P2Y receptors in liver physiology has been well documented, limited information is available regarding the potential role of hepatic P2X receptors in the modulation of liver homeostasis.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 3","pages":"341-348"},"PeriodicalIF":0.0,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.32","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30664232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of purinergic P2X receptors in the control of liver homeostasis.","authors":"Michel Fausther, E. Gonzales, J. Dranoff","doi":"10.1002/WMTS.60","DOIUrl":"https://doi.org/10.1002/WMTS.60","url":null,"abstract":"It is now accepted that extracellular ATP and other nucleotides are potent signaling molecules, akin to neurotransmitters, hormones and lipid mediators. In the liver, several clues support a significant role for extracellular ATP-induced signaling pathways in the control of tissue homeostasis. First, ATP and other nucleotides are physiologically detected in extracellular fluids within the liver, including sinusoidal blood and intraductular bile, in various mammalian species including human and rodents. Moreover, finely tuned mechanisms of ATP release by different liver cell types have been described, under physiological cellular changes. In addition, most hepatic cells constitutively express, at the membrane level, several ATP-metabolizing ectoenzymes and ATP-sensitive receptors that modulate and transduce these mediator signals respectively. Finally, hepatic cells also express numerous membrane transporters that actively contribute to purinergic salvage pathways. Once released in the extracellular medium, unmetabolised ATP molecules can bind to purinergic P2X and P2Y receptors, and subsequently trigger various intracellular signal transduction pathways collectively referred to as purinergic signaling. In the liver, purinergic signaling has been shown to regulate key basic cellular functions, such as glucose/lipid metabolism, protein synthesis and ionic secretion, and homeostatic processes, such as cell cycle, inflammatory response and immunity. Whilst the functional relevance of P2Y receptors in liver physiology has been well documented, limited information is available regarding the potential role of hepatic P2X receptors in the modulation of liver homeostasis.","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"7 1","pages":"341-348"},"PeriodicalIF":0.0,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74518512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"mGlu Receptors and Cancerous Growth.","authors":"Jessica Teh, Suzie Chen","doi":"10.1002/wmts.21","DOIUrl":"https://doi.org/10.1002/wmts.21","url":null,"abstract":"<p><p>G-protein coupled receptors (GPCR) represent a class of therapeutic targets that have been widely exploited for drug designs and development. Metabotropic glutamate receptors (mGluRs) belong to Class C GPCRs and are predominantly involved in maintaining cellular homeostasis in the central nervous system (CNS). The surprising accumulating evidence suggesting other functional roles of mGluRs in human malignancies in addition to synaptic transmission has presented intriguing possibilities to make mGluRs putative novel targets for human cancers. Since our group first described the aberrant expression of mGluR1 as the driving force in melanomagenesis in transgenic mouse models, other subtypes of mGluRs have been implicated in the pathogenesis of various cancer types such as malignant gliomas and medulloblastomas. As such, increased efforts have been generated to elucidate the mechanisms by which mGluRs confer oncogenic potentials. Current knowledge on the participation of various mGluRs in several human cancers suggests that mGluRs are \"druggable\" members of the GPCR superfamily and their oncogenic implications in cancer, so further understanding on anti-mGluR strategies will be beneficial.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 2","pages":"211-220"},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.21","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30664290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabotropic glutamate receptor-mediated signaling in neuroglia.","authors":"David J Loane, Bogdan A Stoica, Alan I Faden","doi":"10.1002/wmts.30","DOIUrl":"https://doi.org/10.1002/wmts.30","url":null,"abstract":"<p><p>Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I-III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial-neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 2","pages":"136-150"},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.30","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30664289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calcium channels of schistosomes: unresolved questions and unexpected answers.","authors":"Vicenta Salvador-Recatalà, Robert M Greenberg","doi":"10.1002/wmts.19","DOIUrl":"https://doi.org/10.1002/wmts.19","url":null,"abstract":"<p><p>Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a highly prevalent, neglected tropical disease that causes significant morbidity in hundreds of millions of people worldwide. The current treatment of choice against schistosomiasis is praziquantel (PZQ), which is known to affect Ca(2+) homeostasis in schistosomes, but which has an undefined molecular target and mode of action. PZQ is the only available antischistosomal drug in most parts of the world, making reports of PZQ resistance particularly troubling. Voltage-gated Ca(2+) (Ca(v)) channels have been proposed as possible targets for PZQ, and, given their central role in the neuromuscular system, may also serve as targets for new anthelmintic therapeutics. Indeed, ion channels constitute the majority of targets for current anthelmintics. Ca(v) channel subunits from schistosomes and other platyhelminths have several unique properties that make them attractive as potential drug targets, and that could also provide insights into structure-function relationships in, and evolution of, Ca(v) channels.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 1","pages":"85-93"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30470828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"P2X receptors in neuroglia.","authors":"Alexei Verkhratsky, Yuri Pankratov, Ulyana Lalo, Maiken Nedergaard","doi":"10.1002/wmts.12","DOIUrl":"https://doi.org/10.1002/wmts.12","url":null,"abstract":"<p><p>Different types of ionotropic P2X purinoceptors are expressed in all major types of neuroglia, where they mediate a variety of physiological and pathological signaling. Cortical astrocytes express specific P2X<sub>1/5</sub> heteromeric receptors that are activated by ongoing synaptic transmission and can trigger fast local signaling through elevation in cytoplasmic Ca<sup>2+</sup> and Na<sup>+</sup> concentrations. Oligodendrocytes express several types of P2X receptors that may control their development and mediate axonal-glial interactions. In microglia, P2X<sub>4</sub> and P2X<sub>7</sub> receptors regulate numerous events associated with microglial activation, motility, and release of proinflammatory factors.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31964982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"P2Y receptors and kidney function.","authors":"Volker Vallon, James Stockand, Timo Rieg","doi":"10.1002/wmts.61","DOIUrl":"https://doi.org/10.1002/wmts.61","url":null,"abstract":"<p><p>Cellular release of nucleotides is of physiological importance to regulate and maintain cell function and integrity. Also in the tubular and collecting duct system of the kidney, nucleotides are released in response to changes in cell volume or luminal flow rate and act in a paracrine and autocrine way on basolateral and luminal P2Y receptors. Recent studies using gene knockout mice assigned a prominent role to G protein-coupled P2Y(2) receptors, which are activated by both ATP and UTP. The antidiuretic hormone, arginine-vasopressin (AVP), and possibly an increase in collecting duct cell volume induce ATP release. The subsequent activation of P2Y(2) receptors inhibits AVP-induced cAMP formation and water reabsorption, which stabilizes cell volume and facilitates water excretion. An increase in NaCl intake enhances luminal release of ATP and UTP in the aldosterone-sensitive distal nephron which by activating apical P2Y(2) receptors and phospholipase C lowers the open probability of the epithelial sodium channel ENaC, thereby facilitating sodium excretion. Thus, the renal ATP/UTP/P2Y(2) receptor system not only serves to preserve cell volume and integrity but is also regulated by stimuli that derive from body NaCl homeostasis. The system also inhibits ENaC activity during aldosterone escape, i.e. when sodium reabsorption via ENaC is inappropriately high. The P2Y(2) receptor tone inhibits the expression and activity of the Na-K-2Cl cotransporter NKCC2 in the thick ascending limb and mediates vasodilation. While the role of other P2Y receptors in the kidney is less clear, the ATP/UTP/P2Y(2) receptor system regulates NaCl and water homeostasis and blood pressure.</p>","PeriodicalId":89646,"journal":{"name":"Wiley interdisciplinary reviews. Membrane transport and signaling","volume":"1 6","pages":"731-742"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wmts.61","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31043121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}