Somayeh Jolany Vangah, Camellia Katalani, Hannah A Boone, Abbas Hajizade, Adna Sijercic, Gholamreza Ahmadian
{"title":"Correction to: CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases.","authors":"Somayeh Jolany Vangah, Camellia Katalani, Hannah A Boone, Abbas Hajizade, Adna Sijercic, Gholamreza Ahmadian","doi":"10.1186/s12575-020-00136-2","DOIUrl":"https://doi.org/10.1186/s12575-020-00136-2","url":null,"abstract":"<p><p>An amendment to this paper has been published and can be accessed via the original article.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 1","pages":"24"},"PeriodicalIF":6.4,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00136-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38350610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays.","authors":"Fatemeh Sadeghi, Marzieh Asgari, Mojdeh Matloubi, Maral Ranjbar, Nahid Karkhaneh Yousefi, Tahereh Azari, Majid Zaki-Dizaji","doi":"10.1186/s12575-020-00133-5","DOIUrl":"10.1186/s12575-020-00133-5","url":null,"abstract":"<p><strong>Background: </strong>DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis.</p><p><strong>Body: </strong>BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer.</p><p><strong>Conclusion: </strong>In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"23"},"PeriodicalIF":6.4,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38454506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somayeh Jolany Vangah, Camellia Katalani, Hannah A Booneh, Abbas Hajizade, Adna Sijercic, Gholamreza Ahmadian
{"title":"CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases.","authors":"Somayeh Jolany Vangah, Camellia Katalani, Hannah A Booneh, Abbas Hajizade, Adna Sijercic, Gholamreza Ahmadian","doi":"10.1186/s12575-020-00135-3","DOIUrl":"10.1186/s12575-020-00135-3","url":null,"abstract":"<p><p>Interest in CRISPR technology, an instrumental component of prokaryotic adaptive immunity which enables prokaryotes to detect any foreign DNA and then destroy it, has gained popularity among members of the scientific community. This is due to CRISPR's remarkable gene editing and cleaving abilities. While the application of CRISPR in human genome editing and diagnosis needs to be researched more fully, and any potential side effects or ambiguities resolved, CRISPR has already shown its capacity in an astonishing variety of applications related to genome editing and genetic engineering. One of its most currently relevant applications is in diagnosis of infectious and non-infectious diseases. Since its initial discovery, 6 types and 22 subtypes of CRISPR systems have been discovered and explored. Diagnostic CRISPR systems are most often derived from types II, V, and VI. Different types of CRISPR-Cas systems which have been identified in different microorganisms can target DNA (e.g. Cas9 and Cas12 enzymes) or RNA (e.g. Cas13 enzyme). Viral, bacterial, and non-infectious diseases such as cancer can all be diagnosed using the cleavage activity of CRISPR enzymes from the aforementioned types. Diagnostic tests using Cas12 and Cas13 enzymes have already been developed for detection of the emerging SARS-CoV-2 virus. Additionally, CRISPR diagnostic tests can be performed using simple reagents and paper-based lateral flow assays, which can potentially reduce laboratory and patient costs significantly. In this review, the classification of CRISPR-Cas systems as well as the basis of the CRISPR/Cas mechanisms of action will be presented. The application of these systems in medical diagnostics with emphasis on the diagnosis of COVID-19 will be discussed.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"22"},"PeriodicalIF":3.7,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38487179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an In Vitro 3D Model for Investigating Ligamentum Flavum Hypertrophy.","authors":"Cheng-Li Lin, Yi-Ting Kuo, Che-Hao Tsao, Yan-Jye Shyong, Shu-Hsien Shih, Ting-Yuan Tu","doi":"10.1186/s12575-020-00132-6","DOIUrl":"https://doi.org/10.1186/s12575-020-00132-6","url":null,"abstract":"<p><strong>Background: </strong>Ligamentum flavum hypertrophy (LFH) is among the most crucial factors in degenerative lumbar spinal stenosis, which can cause back pain, lower extremity pain, cauda equina syndrome and neurogenic claudication. The exact pathogenesis of LFH remains elusive despite extensive research. Most in vitro studies investigating LFH have been carried out using conventional two-dimensional (2D) cell cultures, which do not resemble in vivo conditions, as they lack crucial pathophysiological factors found in three-dimensional (3D) LFH tissue, such as enhanced cell proliferation and cell cluster formation. In this study, we generated ligamentum flavum (LF) clusters using spheroid cultures derived from primary LFH tissue.</p><p><strong>Results: </strong>The cultured LF spheroids exhibited good viability and growth on an ultra-low attachment 96-well plate (ULA 96-plate) platform according to live/dead staining. Our results showed that the 100-cell culture continued to grow in size, while the 1000-cell culture maintained its size, and the 5000-cell culture exhibited a decreasing trend in size as the culture time increased; long-term culture was validated for at least 28 days. The LF spheroids also maintained the extracellular matrix (ECM) phenotype, i.e., fibronectin, elastin, and collagen I and III. The 2D culture and 3D culture were further compared by cell cycle and Western blot analyses. Finally, we utilized hematoxylin and eosin (H&E) staining to demonstrate that the 3D spheroids resembled part of the cell arrangement in LF hypertrophic tissue.</p><p><strong>Conclusions: </strong>The developed LF spheroid model has great potential, as it provides a stable culture platform in a 3D model that can further improve our understanding of the pathogenesis of LFH and has applications in future studies.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"20"},"PeriodicalIF":6.4,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00132-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38438894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential Diagnostic Systems for Coronavirus Detection: a Critical Review.","authors":"Elena Ekrami, Mahdi Pouresmaieli, Fatemeh Barati, Sahar Asghari, Farzad Ramezani Ziarani, Parvin Shariati, Matin Mamoudifard","doi":"10.1186/s12575-020-00134-4","DOIUrl":"https://doi.org/10.1186/s12575-020-00134-4","url":null,"abstract":"<p><strong>Abstract: </strong>Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"21"},"PeriodicalIF":6.4,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00134-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38342670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive review of COVID-19 characteristics.","authors":"Hanie Esakandari, Mohsen Nabi-Afjadi, Javad Fakkari-Afjadi, Navid Farahmandian, Seyed-Mohsen Miresmaeili, Elham Bahreini","doi":"10.1186/s12575-020-00128-2","DOIUrl":"10.1186/s12575-020-00128-2","url":null,"abstract":"<p><p>In December 2019, a novel coronavirus, named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or (2019-nCoV) with unknown origin spread in Hubei province of China. The epidemic disease caused by SARS-CoV-2 called coronavirus disease-19 (COVID-19). The presence of COVID-19 was manifested by several symptoms, ranging from asymptomatic/mild symptoms to severe illness and death. The viral infection expanded internationally and WHO announced a Public Health Emergency of International Concern. To quickly diagnose and control such a highly infectious disease, suspicious individuals were isolated and diagnostic/treatment procedures were developed through patients' epidemiological and clinical data. Early in the COVID-19 outbreak, WHO invited hundreds of researchers from around the world to develop a rapid quality diagnosis, treatment and vaccines, but so far no specific antiviral treatment or vaccine has been approved by the FDA. At present, COVID-19 is managed by available antiviral drugs to improve the symptoms, and in severe cases, supportive care including oxygen and mechanical ventilation is used for infected patients. However, due to the worldwide spread of the virus, COVID-19 has become a serious concern in the medical community. According to the current data of WHO, the number of infected and dead cases has increased to 8,708,008 and 461,715, respectively (Dec 2019 -June 2020). Given the high mortality rate and economic damage to various communities to date, great efforts must be made to produce successful drugs and vaccines against 2019-nCoV infection. For this reason, first of all, the characteristics of the virus, its pathogenicity, and its infectious pathways must be well known. Thus, the main purpose of this review is to provide an overview of this epidemic disease based on the current evidence.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"19"},"PeriodicalIF":3.7,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38255428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gemma Serrano-Heras, Inmaculada Díaz-Maroto, Beatriz Castro-Robles, Blanca Carrión, Ana B Perona-Moratalla, Julia Gracia, Sandra Arteaga, Francisco Hernández-Fernández, Jorge García-García, Oscar Ayo-Martín, Tomás Segura
{"title":"Isolation and Quantification of Blood Apoptotic Bodies, a Non-invasive Tool to Evaluate Apoptosis in Patients with Ischemic Stroke and Neurodegenerative Diseases.","authors":"Gemma Serrano-Heras, Inmaculada Díaz-Maroto, Beatriz Castro-Robles, Blanca Carrión, Ana B Perona-Moratalla, Julia Gracia, Sandra Arteaga, Francisco Hernández-Fernández, Jorge García-García, Oscar Ayo-Martín, Tomás Segura","doi":"10.1186/s12575-020-00130-8","DOIUrl":"https://doi.org/10.1186/s12575-020-00130-8","url":null,"abstract":"<p><strong>Background: </strong>Improper regulation of apoptosis has been postulated as one of the main factors that contributes to the etiology and/or progression of several prevalent diseases, including ischemic stroke and neurodegenerative pathologies. Consequently, in the last few years, there has been an ever-growing interest in the in vivo study of apoptosis. The clinical application of the tissue sampling and imaging approaches to analyze apoptosis in neurological diseases is, however, limited. Since apoptotic bodies are membrane vesicles that are released from fragmented apoptotic cells, it follows that the presence of these vesicles in the bloodstream is likely due to the apoptotic death of cells in tissues. We therefore propose to use circulating apoptotic bodies as biomarkers for measuring apoptotic death in patients with ischemic stroke and neurodegenerative diseases.</p><p><strong>Results: </strong>Since there is no scientific literature establishing the most appropriate method for collecting and enumerating apoptotic bodies from human blood samples. Authors, here, describe a reproducible centrifugation-based method combined with flow cytometry analysis to isolate and quantify plasma apoptotic bodies of patients with ischemic stroke, multiple sclerosis, Parkinson's disease and also in healthy controls. Electron microscopy, dynamic light scattering and proteomic characterization in combination with flow cytometry studies revealed that our isolation method achieves notable recovery rates of highly-purified intact apoptotic bodies.</p><p><strong>Conclusions: </strong>This easy, minimally time consuming and effective procedure for isolating and quantifying plasma apoptotic bodies could help physicians to implement the use of such vesicles as a non-invasive tool to monitor apoptosis in patients with cerebrovascular and neurodegenerative diseases for prognostic purposes and for monitoring disease activity.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"17"},"PeriodicalIF":6.4,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00130-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38248151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flavio De Maio, Brunella Posteraro, Francesca Romana Ponziani, Paola Cattani, Antonio Gasbarrini, Maurizio Sanguinetti
{"title":"Nasopharyngeal Microbiota Profiling of SARS-CoV-2 Infected Patients.","authors":"Flavio De Maio, Brunella Posteraro, Francesca Romana Ponziani, Paola Cattani, Antonio Gasbarrini, Maurizio Sanguinetti","doi":"10.1186/s12575-020-00131-7","DOIUrl":"https://doi.org/10.1186/s12575-020-00131-7","url":null,"abstract":"<p><p>We analyzed the bacterial communities of the nasopharynx in 40 SARS-CoV-2 infected and uninfected patients. All infected patients had a mild COVID-19 disease. We did not find statistically significant differences in either bacterial richness and diversity or composition. These findings suggest a nasopharyngeal microbiota at least early resilient to SARS-CoV-2 infection.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"18"},"PeriodicalIF":6.4,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00131-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38207753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19.","authors":"Reza Zolfaghari Emameh, Hassan Nosrati, Mahyar Eftekhari, Reza Falak, Majid Khoshmirsafa","doi":"10.1186/s12575-020-00127-3","DOIUrl":"https://doi.org/10.1186/s12575-020-00127-3","url":null,"abstract":"<p><strong>Background: </strong>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV.</p><p><strong>Results: </strong>In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients.</p><p><strong>Conclusions: </strong>Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"16"},"PeriodicalIF":6.4,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00127-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38228419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential Drugs and Remedies for the Treatment of COVID-19: a Critical Review.","authors":"Fatemeh Barati, Mahdi Pouresmaieli, Elena Ekrami, Sahar Asghari, Farzad Ramezani Ziarani, Matin Mamoudifard","doi":"10.1186/s12575-020-00129-1","DOIUrl":"10.1186/s12575-020-00129-1","url":null,"abstract":"<p><strong>Abstract: </strong>COVID-19 disease with a high rate of contagious and highly nonspecific symptoms, is an infectious disease caused by a newly discovered coronavirus. Most people who fall sick with COVID-19 will experience mild to moderate symptoms such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia and recover without any special cure. However, some others need special and emergency treatment to get rid of this widespread disease. Till now, there are numbers of proposed novel compounds as well as standards therapeutics agent existed for other conditions seems to have efficacy against the 2019-nCoV. Some which are being tested for MERS-CoV and SARS-CoV are validated that could be also efficient against this new coronavirus. However, there are currently no effective specific antivirals or drug combinations introduced for 2019-nCoV specifically that be supported by high-level evidence. The main purpose of this paper is to review typical and ongoing treatments for coronavirus disease including home remedies, herbal medicine, chemical drugs, plasma therapy, and also vaccinies. In this regards, famous herbal medicines and common chemical drugs which are routinely to be prescribed for patients are introduced. Moreover, a section is assigned to the drug interactions and some outdated drugs which have been proved to be inefficient. We hope that this work could pave the way for researchers to develop faster and more reliable methods for earlier treatment of patients and rescue more people.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"22 ","pages":"15"},"PeriodicalIF":6.4,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12575-020-00129-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38228418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}