Biomolecules & Therapeutics最新文献

筛选
英文 中文
Primed Mesenchymal Stem Cells by IFN-γ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation. IFN-γ和IL-1β诱导间充质干细胞通过增强归巢效应和免疫调节改善急性呼吸窘迫综合征
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-20 DOI: 10.4062/biomolther.2025.004
Taeho Kong, Su Kyoung Seo, Yong-Seok Han, Woo Min Seo, Bokyong Kim, Jieun Kim, Young-Jae Cho, Seunghee Lee, Kyung-Sun Kang
{"title":"Primed Mesenchymal Stem Cells by IFN-γ and IL-1β Ameliorate Acute Respiratory Distress Syndrome through Enhancing Homing Effect and Immunomodulation.","authors":"Taeho Kong, Su Kyoung Seo, Yong-Seok Han, Woo Min Seo, Bokyong Kim, Jieun Kim, Young-Jae Cho, Seunghee Lee, Kyung-Sun Kang","doi":"10.4062/biomolther.2025.004","DOIUrl":"10.4062/biomolther.2025.004","url":null,"abstract":"<p><p>Acute Respiratory Distress Syndrome (ARDS) is a severe condition characterized by extensive lung inflammation and increased alveolar-capillary permeability, often triggered by infections or systemic inflammatory responses. Mesenchymal stem cells (MSCs)-based therapy holds promise for treating ARDS, as MSCs manifest immunomodulatory and regenerative properties that mitigate inflammation and enhance tissue repair. Primed MSCs, modified to augment specific functionalities, demonstrate superior therapeutic efficacy in targeted therapies compared to naive MSCs. This study explored the immunomodulatory potential of MSCs using mixed lymphocyte reaction (MLR) assays and co-culture experiments with M1/M2 macrophages. Additionally, RNA sequencing was employed to identify alterations in immune and inflammation-related factors in primed MSCs. The therapeutic effects of primed MSCs were assessed in an LPS-induced ARDS mouse model, and the underlying mechanisms were investigated through spatial transcriptomics analysis. The study revealed that MSCs primed with IFN-γ and IL-1β significantly enhanced the suppression of T cell activity compared to naive MSCs, concurrently inhibiting TNF-α while increasing IL-10 production in macrophages. Notably, combined treatment with these two cytokines resulted in a significant upregulation of immune and inflammation-regulating factors. Furthermore, our analyses elucidated the mechanisms behind the therapeutic effects of primed MSCs, including the inhibition of inflammatory cell infiltration in lung tissue, modulation of immune and inflammatory responses, and enhancement of elastin fiber formation. Signaling pathway analysis confirmed that efficacy could be enhanced by modulating NFκB and TNF-α signaling. In conclusion, in early-phase ARDS, primed MSCs displayed enhanced homing capabilities, improved lung function, and reduced inflammation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"311-324"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice. 一种新的组蛋白去乙酰化酶6抑制剂,4-FHA,改善东莨菪碱诱导的小鼠认知和记忆障碍。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.110
Jee-Yeon Seo, Jisoo Kim, Yong-Hyun Ko, Bo-Ram Lee, Kwang-Hyun Hur, Young Hoon Jung, Hyun-Ju Park, Seok-Yong Lee, Choon-Gon Jang
{"title":"A Novel Histone Deacetylase 6 Inhibitor, 4-FHA, Improves Scopolamine-Induced Cognitive and Memory Impairment in Mice.","authors":"Jee-Yeon Seo, Jisoo Kim, Yong-Hyun Ko, Bo-Ram Lee, Kwang-Hyun Hur, Young Hoon Jung, Hyun-Ju Park, Seok-Yong Lee, Choon-Gon Jang","doi":"10.4062/biomolther.2024.110","DOIUrl":"10.4062/biomolther.2024.110","url":null,"abstract":"<p><p>Although histone deacetylase 6 (HDAC6) is considered a therapeutic target for Alzheimer's disease (AD), its role in cholinergic dysfunction in AD patients remains unclear. This study investigated the effects of (<i>E</i>)-3-(2-(4-fluorostyryl)thiazol-4-yl)-<i>N</i>-hydroxypropanamide (4-FHA), a new synthetic HDAC6 inhibitor, on cognitive and memory impairments in a scopolamine-induced-AD mouse model. Behaviorally, 4-FHA improved scopolamine-induced memory impairments in the Y-maze, passive avoidance, and Morris water maze tests. In addition, 4-FHA ameliorated scopolamine-induced cognitive impairments in the novel object recognition and place recognition tests. Furthermore, 4-FHA increased acetylation of α-tubulin (a major HDAC6 substrate); the expression of BDNF; and the phosphorylation of ERK 1/2, CREB, and ChAT in the hippocampus of scopolamine-treated mice. In summary, according to our data 4-FHA, an HDAC6 inhibitor, improved the cognitive and memory deficits of the AD mouse model by normalizing BDNF signaling and synaptic transmission, suggesting that 4-FHA might be a potential therapeutic candidate for AD.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"268-277"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells. β-Lapachone对谷氨酸诱导HT22细胞损伤的神经保护作用。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.241
Hae Rim Lee, Hye Jin Jee, Yi-Sook Jung
{"title":"Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells.","authors":"Hae Rim Lee, Hye Jin Jee, Yi-Sook Jung","doi":"10.4062/biomolther.2024.241","DOIUrl":"10.4062/biomolther.2024.241","url":null,"abstract":"<p><p>While glutamate, a key neurotransmitter in the central nervous system, is fundamental to neuronal viability and normal brain function, its excessive accumulation leads to oxidative stress, contributing to neuronal damage and neurodegenerative diseases. In this study, we investigated the effect of β-lapachone (β-Lap), a naturally occurring naphthoquinone, on glutamate-induced injury in HT22 cells and explored the underlying mechanism involved. Our results show that β-Lap significantly improved cell viability in a dose-dependent manner. Additionally, β-Lap exhibited a significant antioxidant activity, reducing intracellular reactive oxygen species levels and restoring glutathione levels. The antioxidant capacity of β-Lap was further demonstrated through 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Western blot analysis revealed that β-Lap upregulated brain-derived neurotrophic factor (BDNF) and promoted the phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response elementbinding protein (CREB), which were downregulated by glutamate. Furthermore, β-Lap enhanced the cellular antioxidant molecules, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In conclusion, β-Lap can protect HT22 cells against glutamate-induced injury by activating the BDNF/TrkB/ERK/CREB and ERK/Nrf2/HO-1 signaling pathways, suggesting its therapeutic potential for neurodegenerative diseases.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"286-296"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment. 一种两栖动物来源的蛋白质为各种伤口治疗提供了新的生物治疗药物。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.096
Hao-Ran Chen, Nan Zhou, Yu-Da Liu, Li-Hua Peng
{"title":"An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment.","authors":"Hao-Ran Chen, Nan Zhou, Yu-Da Liu, Li-Hua Peng","doi":"10.4062/biomolther.2024.096","DOIUrl":"10.4062/biomolther.2024.096","url":null,"abstract":"<p><p>Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both <i>in vitro</i> and <i>in vivo</i>. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. <i>In vivo</i>, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"399-407"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galangin Regulates Mucin 5AC Gene Expression via the Nuclear Factor-κB Inhibitor α/Nuclear Factor-κB p65 Pathway in Human Airway Epithelial Cells. 高良姜通过核因子-κB抑制剂α/核因子-κB p65通路调控人气道上皮细胞粘蛋白5AC基因表达
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.140
Rajib Hossain, Hyun Jae Lee, Choong Jae Lee
{"title":"Galangin Regulates Mucin 5AC Gene Expression via the Nuclear Factor-κB Inhibitor α/Nuclear Factor-κB p65 Pathway in Human Airway Epithelial Cells.","authors":"Rajib Hossain, Hyun Jae Lee, Choong Jae Lee","doi":"10.4062/biomolther.2024.140","DOIUrl":"10.4062/biomolther.2024.140","url":null,"abstract":"<p><p>In this study, we investigated the effects of the flavonoid galangin on the expression of the mucin 5AC (<i>MUC5AC</i>) gene in airway cells. Human pulmonary epithelial NCI-H292 cells were pretreated with galangin for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. We also examined the effects of galangin on the PMA-induced nuclear factor-κB (NF-κB) signaling pathway. Galangin inhibited the production of glycoproteins and the expression of <i>MUC5AC</i> mRNA induced by PMA via prevention of NF-κB inhibitor α degradation and NF-κB p65 nuclear translocation. These findings indicated that galangin suppressed mucin gene expression by modulating the NF-κB signaling pathway in human pulmonary epithelial cells.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"325-330"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells. 异异黄酮素通过ros介导的抑制人黑色素瘤细胞p38/mTOR/STAT3通路诱导凋亡
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.118
Mi Jeong Kwon, Pawan Kumar Raut, Jeong-Hoon Jang, Kyung-Soo Chun
{"title":"Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells.","authors":"Mi Jeong Kwon, Pawan Kumar Raut, Jeong-Hoon Jang, Kyung-Soo Chun","doi":"10.4062/biomolther.2024.118","DOIUrl":"10.4062/biomolther.2024.118","url":null,"abstract":"<p><p>Isoliquiritigenin (ISL), a phenolic compound derived from licorice, exhibits various biological activities, including anti-inflammatory, anti-viral, anti-tumor, and antioxidant effects. However, the molecular mechanisms underlying its anti-cancer effects are not well understood in SK-MEL-28 melanoma cells. Melanoma, a highly aggressive and treatment-resistant cancer, remains a significant health challenge. This study investigates the anti-cancer effects of ISL, focusing on identifying reactive oxygen species (ROS)-mediated apoptosis mechanisms on SK-MEL-28 melanoma cells. Our results show that ISL treatment induces apoptosis in SK-MEL-28 cells, as evidenced by the cleavage of caspase-9, -7, -3, and PARP. ISL increased Bax expression, decreased Bcl-2 expression, and promoted cytochrome C release into the cytosol. ISL also reduced the expression of cell cycle markers, including cyclin D1, D3, and survivin. Notably, ISL treatment markedly increased intracellular ROS levels and pretreatment with N-acetyl cysteine, a ROS scavenger, abrogated the ISL-induced inhibition of the p38/mTOR/STAT3 pathway and prevented apoptosis. Moreover, ISL significantly diminished the constitutive phosphorylation of mTOR and STAT3 in SK-MEL-28 cells by blocking the phosphorylation of p38 MAPK, an upstream kinase of mTOR. Pharmacological inhibition of mTOR attenuated the STAT3 signaling, indicating that mTOR acts as an upstream kinase of STAT3 in these cells. Collectively, these findings demonstrate that ISL inhibits SK-MEL-28 cell growth by downregulating cell survival proteins and inducing apoptosis through ROS generation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"378-387"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK. 甘草查尔酮D通过诱导ROS生成和磷酸化JNK和p38 MAPK在人结直肠癌细胞中发挥抗肿瘤活性。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-03-01 Epub Date: 2025-02-12 DOI: 10.4062/biomolther.2024.123
Seung-On Lee, Sang Hoon Joo, Seung-Sik Cho, Goo Yoon, Yung Hyun Choi, Jin Woo Park, Kwon-Yeon Weon, Jung-Hyun Shim
{"title":"Licochalcone D Exerts Antitumor Activity in Human Colorectal Cancer Cells by Inducing ROS Generation and Phosphorylating JNK and p38 MAPK.","authors":"Seung-On Lee, Sang Hoon Joo, Seung-Sik Cho, Goo Yoon, Yung Hyun Choi, Jin Woo Park, Kwon-Yeon Weon, Jung-Hyun Shim","doi":"10.4062/biomolther.2024.123","DOIUrl":"10.4062/biomolther.2024.123","url":null,"abstract":"<p><p>Anticancer activities of Licochalcone D (LCD) in human colorectal cancer (CRC) cells HCT116 and oxaliplatin-resistant HCT116 (HCT116-OxR) were determined. Cell viability assay and soft agar assay were used to analyze antiproliferative activity of LCD. Flow cytometry was performed to determine effects of LCD on apoptosis, cell cycle distribution, reactive oxygen species (ROS), mitochondrial membrane potential (MMP) dysfunction, and multi-caspase activity in CRC cells. Western blot analysis was used to monitor levels of proteins involved in cell cycle and apoptosis signaling pathways. LCD suppressed the growth and anchorageindependent colony formation of both HCT116 and HCT116-OxR cells. Cell cycle analysis by flow cytometry indicated that LCD induced cell cycle arrest and increased cells in sub-G1 phase. In parallel with the antiproliferative effect of LCD, LCD up-regulated levels of p21 and p27 while downregulating cyclin B1 and cdc2. In addition, phosphorylation levels of JNK and p38 mitogen-activated protein kinase (MAPK) were increased by LCD. Inhibition of these kinases somehow prevented the antiproliferative effect of LCD. Moreover, LCD increased ROS and deregulated mitochondrial membrane potential, leading to the activation of multiple caspases. An ROS scavenger N-acetyl-cysteine (NAC) or pan-caspase inhibitor Z-VAD-FMK prevented the antiproliferative effect of LCD, supporting that ROS generation and caspase activation mediated LCD-induced apoptosis in CRC cells. In conclusion, LCD exerted antitumor activity in CRC cells by inducing ROS generation and phosphorylation of JNK and p38 MAPK. These results support that LCD could be further developed as a chemotherapeutic agent for treating CRC.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"344-354"},"PeriodicalIF":3.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss. 丹参酮,天然NADPH氧化酶抑制剂,减轻睾丸激素引起的脱发。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI: 10.4062/biomolther.2024.097
Yeo Kyu Hur, Jin Yeong Chae, Min Hye Choi, Kkotnara Park, Da-Woon Bae, Soo-Bong Park, Sun-Shin Cha, Hye Eun Lee, In Hye Lee, Yun Soo Bae
{"title":"Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss.","authors":"Yeo Kyu Hur, Jin Yeong Chae, Min Hye Choi, Kkotnara Park, Da-Woon Bae, Soo-Bong Park, Sun-Shin Cha, Hye Eun Lee, In Hye Lee, Yun Soo Bae","doi":"10.4062/biomolther.2024.097","DOIUrl":"10.4062/biomolther.2024.097","url":null,"abstract":"<p><p>Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H<sub>2</sub>O<sub>2</sub> which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from <i>Salviae Miltiorrhizae Radix</i>. The IC<sub>50</sub> values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H<sub>2</sub>O<sub>2</sub> and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"210-220"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation. 核因子-2相关因子2在结直肠癌电离辐射抵抗中的表观遗传调控。
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-01-01 Epub Date: 2024-12-23 DOI: 10.4062/biomolther.2024.183
Kyoung Ah Kang, Jinny Park, Mei Jing Piao, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Herath Mudiyanselage Maheshika Madhuwanthi Senavirathna, Jung-Hwan Kim, Suk Ju Cho, Jin Won Hyun
{"title":"Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation.","authors":"Kyoung Ah Kang, Jinny Park, Mei Jing Piao, Pincha Devage Sameera Madushan Fernando, Herath Mudiyanselage Udari Lakmini Herath, Herath Mudiyanselage Maheshika Madhuwanthi Senavirathna, Jung-Hwan Kim, Suk Ju Cho, Jin Won Hyun","doi":"10.4062/biomolther.2024.183","DOIUrl":"10.4062/biomolther.2024.183","url":null,"abstract":"<p><p>γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators. Reactive oxygen species (ROS) levels, antioxidant enzyme expression, NRF2 expression, and nuclear translocation were higher in SNUC5/RR cells irradiated with or without 8 Gy than in SNUC5 cells. The DNA demethylase ten-eleven translocation 1 (TET1) expression and TET1 binding to the <i>NRF2</i> promoter in SNUC5/RR cells were stronger than those in SNUC5 cells, indicating lower methylation of CpG islands in the <i>NRF2</i> promoter. TET1 knockdown in SNUC5/RR cells suppressed NRF2 expression significantly. Additionally, histone mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, whereas enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, was downregulated, leading to decreased trimethylation of histone H3 lysine 27. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) levels were lower and higher in SNUC5/RR cells than in SNUC5 cells, respectively. MLL and HAT knockdown in SNUC5/RR cells irradiated with or without 8 Gy decreased levels of NRF2 and heme-oxygenase 1, resulting in enhanced γ-radiation sensitivity. These findings support NRF2 as a target for improving the response to radiotherapy in patients with colorectal cancer.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"182-192"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. 存活基因在神经元和癌细胞中的双重作用:DX2在神经退行性疾病和肿瘤中的策略性临床应用
IF 3 3区 医学
Biomolecules & Therapeutics Pub Date : 2025-01-01 Epub Date: 2024-12-23 DOI: 10.4062/biomolther.2024.138
Kyunghwa Baek
{"title":"The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer.","authors":"Kyunghwa Baek","doi":"10.4062/biomolther.2024.138","DOIUrl":"10.4062/biomolther.2024.138","url":null,"abstract":"<p><p>In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells. Survival gene DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), was found to be overexpressed in various cancer types. The potential of DX2 inhibitors as an anti-cancer drug arises from its unique ability to interact with various oncoproteins, such as KRAS and HSP70. Meanwhile, AIMP2 has been reported as a multifunctional cell death-inducing gene, and survival gene DX2 directly and indirectly inhibits AIMP2-induced cell death. DX2 plays multifaceted survival roles in degenerating neurons via various signaling pathways, including PARP 1, TRAF2, and p53 pathways. It is noteworthy that genes that were previously classified as oncogenes, such as AKT and XBP1, are now being considered as curative transgenes for targeting neurodegenerative diseases. A strategic direction for clinical application of survival genes in neurodegenerative disease and in cancer is justified.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"75-85"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信