Yongun Park, Yunn Me Me Paing, Namki Cho, Changyoun Kim, Jiho Yoo, Ji Woong Choi, Sung Hoon Lee
{"title":"Quinic Acid Alleviates Behavior Impairment by Reducing Neuroinflammation and MAPK Activation in LPS-Treated Mice.","authors":"Yongun Park, Yunn Me Me Paing, Namki Cho, Changyoun Kim, Jiho Yoo, Ji Woong Choi, Sung Hoon Lee","doi":"10.4062/biomolther.2023.184","DOIUrl":"https://doi.org/10.4062/biomolther.2023.184","url":null,"abstract":"Compared to other organs, the brain has limited antioxidant defenses. In particular, the hippocampus is the central region for learning and memory and is highly susceptible to oxidative stress. Glial cells are the most abundant cells in the brain, and sustained glial cell activation is critical to the neuroinflammation that aggravates neuropathology and neurotoxicity. Therefore, regulating glial cell activation is a promising neurotherapeutic treatment. Quinic acid and its derivatives possess anti-oxidant and anti-inflammatory properties. Although previous studies have evidenced quinic acid's benefit on the brain, <i>in vivo</i> and <i>in vitro</i> analyses of its anti-oxidant and anti-inflammatory properties in glial cells have yet to be established. This study investigated quinic acid's rescue effect in lipopolysaccharide (LPS)-induced behavior impairment. Orally administering quinic acid restored social impairment and LPS-induced spatial and fear memory. In addition, quinic acid inhibited proinflammatory mediator, oxidative stress marker, and mitogen-activated protein kinase (MAPK) activation in the LPS-injected hippocampus. Quinic acid inhibited nitrite release and extracellular signal-regulated kinase (ERK) phosphorylation in LPS-stimulated astrocytes. Collectively, quinic acid restored impaired neuroinflammation-induced behavior by regulating proinflammatory mediator and ERK activation in astrocytes, demonstrating its potential as a therapeutic agent for neuroinflammation-induced brain disease treatments.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"57 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyuk-Jun Yoon, Heui Woong Moon, Young Sil Min, Fanxue Jin, Joon Seok Bang, Uy Dong Sohn, Hyun Dong Je
{"title":"Effect of Kaempferol on Modulation of Vascular Contractility Mainly through PKC and CPI-17 Inactivation.","authors":"Hyuk-Jun Yoon, Heui Woong Moon, Young Sil Min, Fanxue Jin, Joon Seok Bang, Uy Dong Sohn, Hyun Dong Je","doi":"10.4062/biomolther.2023.186","DOIUrl":"https://doi.org/10.4062/biomolther.2023.186","url":null,"abstract":"In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties.","authors":"Hong Kyu Lee, Yun-Jung Na, Su-Min Seong, Dohee Ahn, Kyung-Chul Choi","doi":"10.4062/biomolther.2023.198","DOIUrl":"https://doi.org/10.4062/biomolther.2023.198","url":null,"abstract":"Cordycepin, a valuable bioactive component isolated from <i>Cordyceps militaris</i>, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44<sup>high</sup>CD133<sup>high</sup> population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"50 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheol Park, Hee-Jae Cha, Hyun Hwangbo, EunJin Bang, Heui-Soo Kim, Seok Joong Yun, Sung-Kwon Moon, Wun-Jae Kim, Gi-Young Kim, Seung-On Lee, Jung-Hyun Shim, Yung Hyun Choi
{"title":"Activation of Heme Oxygenase-1 by Mangiferin in Human Retinal Pigment Epithelial Cells Contributes to Blocking Oxidative Damage.","authors":"Cheol Park, Hee-Jae Cha, Hyun Hwangbo, EunJin Bang, Heui-Soo Kim, Seok Joong Yun, Sung-Kwon Moon, Wun-Jae Kim, Gi-Young Kim, Seung-On Lee, Jung-Hyun Shim, Yung Hyun Choi","doi":"10.4062/biomolther.2023.175","DOIUrl":"https://doi.org/10.4062/biomolther.2023.175","url":null,"abstract":"Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The results showed that mangiferin attenuated H<sub>2</sub>O<sub>2</sub>-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H<sub>2</sub>O<sub>2</sub>-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H<sub>2</sub>O<sub>2</sub>-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome <i>c</i> into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"12 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling.","authors":"Ari Kwon, Yun Seok Kim, Jiyoon Kim, Ja Hyun Koo","doi":"10.4062/biomolther.2023.174","DOIUrl":"https://doi.org/10.4062/biomolther.2023.174","url":null,"abstract":"Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anugya Gupta, Rajesh Haldhar, Vipul Agarwal, Dharmendra Singh Rajput, Kyung-Soo Chun, Sang Beom Han, Vinit Raj, Sangkil Lee
{"title":"Exploring the Potential of Natural Products as FoxO1 Inhibitors: an In Silico Approach.","authors":"Anugya Gupta, Rajesh Haldhar, Vipul Agarwal, Dharmendra Singh Rajput, Kyung-Soo Chun, Sang Beom Han, Vinit Raj, Sangkil Lee","doi":"10.4062/biomolther.2023.156","DOIUrl":"https://doi.org/10.4062/biomolther.2023.156","url":null,"abstract":"FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID- 3CO6) using the Glide module of the Schrödinger suite. <i>In silico</i> ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"34 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bisan El Dakkak, Jalal Taneera, Waseem El-Huneidi, Eman Abu-Gharbieh, Rifat Hamoudi, Mohammad H Semreen, Nelson C Soares, Eman Y Abu-Rish, Mahmoud Y Alkawareek, Alaaldin M Alkilany, Yasser Bustanji
{"title":"Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy.","authors":"Bisan El Dakkak, Jalal Taneera, Waseem El-Huneidi, Eman Abu-Gharbieh, Rifat Hamoudi, Mohammad H Semreen, Nelson C Soares, Eman Y Abu-Rish, Mahmoud Y Alkawareek, Alaaldin M Alkilany, Yasser Bustanji","doi":"10.4062/biomolther.2023.149","DOIUrl":"https://doi.org/10.4062/biomolther.2023.149","url":null,"abstract":"Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-XL, and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoon Young Cho, Jeong Hill Park, Jung Hee Lee, Sungkwon Chung
{"title":"Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry.","authors":"Yoon Young Cho, Jeong Hill Park, Jung Hee Lee, Sungkwon Chung","doi":"10.4062/biomolther.2023.172","DOIUrl":"https://doi.org/10.4062/biomolther.2023.172","url":null,"abstract":"Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca<sup>2+</sup> dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca<sup>2+</sup> entry (CCE), a refilling mechanism of intracellular Ca<sup>2+</sup>, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydipherryl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heui-Jin Park, Kyuri Kim, Eun-Young Lee, Prima F Hillman, Sang-Jip Nam, Kyung-Min Lim
{"title":"Methylanthranilate, a Food Fragrance Attenuates Skin Pigmentation through Downregulation of Melanogenic Enzymes by cAMP Suppression.","authors":"Heui-Jin Park, Kyuri Kim, Eun-Young Lee, Prima F Hillman, Sang-Jip Nam, Kyung-Min Lim","doi":"10.4062/biomolther.2023.103","DOIUrl":"10.4062/biomolther.2023.103","url":null,"abstract":"<p><p>Methyl anthranilate (MA) is a botanical fragrance used in food flavoring with unexplored potential in anti-pigment cosmetics. MA dose-dependently reduced melanin content without affecting cell viability, inhibited dendrite elongation and melanosome transfer in the co-culture system of human melanoma cells (MNT-1) and human keratinocyte cell line (HaCaT), and downregulated melanogenic genes, including tyrosinase, tyrosinase-related protein 1 and 2 (TRP-1, TRP-2). Additionally, MA decreased cyclic adenosine monophosphate (cAMP) production and exhibited a significant anti-pigmentary effect in Melanoderm™. These results suggest that MA is a promising anti-pigmentary agent for replacing or complementing existing anti-pigmentary cosmetics.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"231-239"},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhaled Volatile Molecules-Responsive TRP Channels as Non-Olfactory Receptors.","authors":"Hyungsup Kim, Minwoo Kim, Yongwoo Jang","doi":"10.4062/biomolther.2023.118","DOIUrl":"10.4062/biomolther.2023.118","url":null,"abstract":"<p><p>Generally, odorant molecules are detected by olfactory receptors, which are specialized chemoreceptors expressed in olfactory neurons. Besides odorant molecules, certain volatile molecules can be inhaled through the respiratory tract, often leading to pathophysiological changes in the body. These inhaled molecules mediate cellular signaling through the activation of the Ca<sup>2+</sup>-permeable transient receptor potential (TRP) channels in peripheral tissues. This review provides a comprehensive overview of TRP channels that are involved in the detection and response to volatile molecules, including hazardous substances, anesthetics, plant-derived compounds, and pheromones. The review aims to shed light on the biological mechanisms underlying the sensing of inhaled volatile molecules. Therefore, this review will contribute to a better understanding of the roles of TRP channels in the response to inhaled molecules, providing insights into their implications for human health and disease.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"192-204"},"PeriodicalIF":3.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9951654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}