Seungchan An, Jaemoo Chun, Joohee Lee, Yeong Shik Kim, Minsoo Noh, Hyejin Ko
{"title":"揭示抑制 STAT3 激活作用的倍半萜内酯的立体化学结构-活性关系","authors":"Seungchan An, Jaemoo Chun, Joohee Lee, Yeong Shik Kim, Minsoo Noh, Hyejin Ko","doi":"10.4062/biomolther.2023.210","DOIUrl":null,"url":null,"abstract":"<p><p>Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (<i>R</i>=0.80, <i>p</i><0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"627-634"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling Stereochemical Structure-Activity Relationships of Sesquiterpene Lactones for Inhibitory Effects on STAT3 Activation.\",\"authors\":\"Seungchan An, Jaemoo Chun, Joohee Lee, Yeong Shik Kim, Minsoo Noh, Hyejin Ko\",\"doi\":\"10.4062/biomolther.2023.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (<i>R</i>=0.80, <i>p</i><0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"627-634\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2023.210\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2023.210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Unraveling Stereochemical Structure-Activity Relationships of Sesquiterpene Lactones for Inhibitory Effects on STAT3 Activation.
Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (R=0.80, p<0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.