Biogeochemistry最新文献

筛选
英文 中文
Exploring the long-term impact of a cadmium pollution accident on microbial communities in river ecosystems 探索镉污染事故对河流生态系统微生物群落的长期影响
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-13 DOI: 10.1007/s10533-024-01150-2
Min Wang, Yuannan Wang, Yanli Wu, Qianli Ma, Jilin Huang, Tao He, Shan Huang, Chen Chen
{"title":"Exploring the long-term impact of a cadmium pollution accident on microbial communities in river ecosystems","authors":"Min Wang,&nbsp;Yuannan Wang,&nbsp;Yanli Wu,&nbsp;Qianli Ma,&nbsp;Jilin Huang,&nbsp;Tao He,&nbsp;Shan Huang,&nbsp;Chen Chen","doi":"10.1007/s10533-024-01150-2","DOIUrl":"10.1007/s10533-024-01150-2","url":null,"abstract":"<div><p>The large leakage accidents of heavy metals from industrial facilities pose a serious environmental problem; however, not enough studies have been conducted to assess the long-term ecological risk associated with such accidents. This study evaluated changes in the bacterial communities within river sediment and identified the key functional microorganisms responding to the 2012 cadmium contamination incident in the Long River, Guangxi Province, China. Results revealed that after a prolonged period of pollution accidents, cadmium pollution still had a discernible effect on the bacterial communities of the river sediment. In comparison to the control site (S1), the bacterial α-diversity in sediments from the accident area (S3) and its downstream (S5) showed a significant increase following the incident. In the control site, <i>Burkholderiaceae</i> was dominant, while in S3 and S5, <i>Pedosphaeraceae</i>, <i>Nitrosomonadaceae</i>, <i>Nitrospiraceae</i> and <i>Geobacteraceae</i> were significantly increased. Sulfur bacteria were found to be more responsive to this cadmium contamination than other bacteria. At site S3, the abundances of <i>Sulfuricurvum</i>, <i>Sulfurifustis</i>, <i>Thioalkalispira</i>, <i>Desulfobacteraceae</i> and <i>Desulfarculaceae</i> were hundreds of times higher than at site S1, indicating an intensification of sulfur cycling processes. The functional prediction implied that cadmium pollution may promote methane oxidation coupled with sulfate reduction reactions and altered the processes of nitrification and denitrification. Environmental factors influencing the microbial community included the levels of metals (cadmium, arsenic, iron) in sediment, as well as other sediment characteristics like temperature and electrical conductivity. These findings contribute to our understanding of the long-term ecological consequences of environmental pollution in river ecosystems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1123 - 1137"},"PeriodicalIF":3.9,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01150-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotic regulation of nitrogen gas emissions in temperate agriculture 温带农业氮气排放的生物调节
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-12 DOI: 10.1007/s10533-024-01157-9
Maya Almaraz, Rebecca Ryals, Peter Groffman, Stephen Porder
{"title":"Biotic regulation of nitrogen gas emissions in temperate agriculture","authors":"Maya Almaraz,&nbsp;Rebecca Ryals,&nbsp;Peter Groffman,&nbsp;Stephen Porder","doi":"10.1007/s10533-024-01157-9","DOIUrl":"10.1007/s10533-024-01157-9","url":null,"abstract":"<div><p>It is generally assumed that fertilizer addition is the prime driver of nitrogen (N) gas loss from modern cropping systems. This assumption has its basis in observations of nitrous oxide (N<sub>2</sub>O, an important greenhouse gas) emissions, and is contrary to theory from unmanaged ecosystems, where N losses are controlled by plant physiological influence on the soil environment. However, dinitrogen (N<sub>2</sub>) emissions are likely a major N loss pathway in both managed and unmanaged ecosystems, but these emissions are very difficult to measure. We directly measured N<sub>2</sub> and N<sub>2</sub>O emissions from two temperate agricultural systems over the course of the growing season to test when total N gas losses are highest. We hypothesized that N<sub>2</sub> emissions mirror those of N<sub>2</sub>O, with the largest flux immediately after fertilization, early in the growing season. Instead, we found that N<sub>2</sub> emissions were highest at the end of the growing season, and were most strongly correlated with soil moisture, which increased after plant senescence. Dinitrogen emissions were an order of magnitude larger than N<sub>2</sub>O. Thus, while N<sub>2</sub>O emissions were highest following fertilization, overall N gas loss was greatest at the end of the growing season. These data suggest that total N gas losses are high and have different temporal patterns from N<sub>2</sub>O fluxes. Understanding the magnitude and controls over these losses are important for understanding and managing the N cycle of temperate agricultural systems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1079 - 1087"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01157-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does montane meadow restoration influence the mineral association and stability of soil carbon? 恢复山地草甸是否会影响土壤碳的矿物关联和稳定性?
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-12 DOI: 10.1007/s10533-024-01162-y
Seren H. Bagcilar, Cody C. Reed, Simon R. Poulson, Paul S. J. Verburg, Benjamin W. Sullivan
{"title":"Does montane meadow restoration influence the mineral association and stability of soil carbon?","authors":"Seren H. Bagcilar,&nbsp;Cody C. Reed,&nbsp;Simon R. Poulson,&nbsp;Paul S. J. Verburg,&nbsp;Benjamin W. Sullivan","doi":"10.1007/s10533-024-01162-y","DOIUrl":"10.1007/s10533-024-01162-y","url":null,"abstract":"<div><p>Soil carbon (C) stability is an important consideration for management that aims to increase long-term C storage. The fraction of soil C allocated to physico-chemically protected mineral-associated organic matter (MAOM) is a common soil C stability benchmark. However, the reality of soil C persistence is more complex than MAOM content alone—particularly in ecosystems such as meadows with high rates of belowground C inputs that can stimulate MAOM decomposition. Here, we combined three metrics of soil C persistence to characterize soil C stability across a meadow restoration chronosequence averaging belowground C gains of 330 g C m<sup>−2</sup> y<sup>−1</sup> for ~20 y. The metrics were: (1) the fraction of soil C in MAOM and particulate organic matter (POM), (2) the susceptibility of soil C to decomposition under varying temperatures, and (3) the utilization of MAOM-C by microbes. Two metrics suggested soil C stability may increase following montane meadow restoration. As soil C concentration increased with restoration, C storage in MAOM, but not POM, increased (metric 1). The susceptibility of MAOM-C to decomposition (microbial respiration relative to MAOM-C) decreased with increasing soil C concentration across temperatures (metric 2). Stable isotope results could not definitively determine the source of carbon dioxide efflux (metric 3) but generate hypotheses for future research to address. We posit that C sequestered following montane meadow restoration could be stable, with implications for regional C storage objectives. Further, our data point toward complex mineral-associated C dynamics including the potential importance of plant inputs for MAOM formation in meadow soils.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1089 - 1105"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01162-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial hydrogenation of cholesterol to coprostanol by anaerobic bacteria: evidence from Antarctic lacustrine sediment 厌氧细菌将胆固醇加氢转化为共烷醇的微生物作用:南极湖沼沉积物的证据
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-12 DOI: 10.1007/s10533-024-01121-7
Xin Chen, Jianjun Wang, Jing Jin, Yaguang Nie, Zhangqin Zheng, Yulu Xue, Weidong Kong, Wenhan Cheng, Jifeng Zhang, Lewen Liang, Yi Yang, Steven D. Emslie, Xiaodong Liu
{"title":"Microbial hydrogenation of cholesterol to coprostanol by anaerobic bacteria: evidence from Antarctic lacustrine sediment","authors":"Xin Chen,&nbsp;Jianjun Wang,&nbsp;Jing Jin,&nbsp;Yaguang Nie,&nbsp;Zhangqin Zheng,&nbsp;Yulu Xue,&nbsp;Weidong Kong,&nbsp;Wenhan Cheng,&nbsp;Jifeng Zhang,&nbsp;Lewen Liang,&nbsp;Yi Yang,&nbsp;Steven D. Emslie,&nbsp;Xiaodong Liu","doi":"10.1007/s10533-024-01121-7","DOIUrl":"10.1007/s10533-024-01121-7","url":null,"abstract":"<div><p>Fecal sterols are traditionally ascribed as important biomarkers for animal excrement, and have been widely used to identify the source of organic matter and to reconstruct paleoecological changes in Antarctic terrestrial, aquatic, and marine ecosystems. However, the in situ microbial hydrogenation of cholesterol to coprostanol could have significance as a proxy to infer paleoenvironmental studies in Antarctica, particularly in anoxic sediment. Here, we report that abundant coprostanol, which was traditionally deemed as a biomarker for human sewage contamination, was found in three anoxic sediment profiles (AC2, BI, and CH1), which were strongly influenced by animal excrement at North Victoria Land, western Ross Sea, Antarctica. Our results suggest that the high concentrations of coprostanol in these three sediment profiles were not due to animal excrement, since coprostanol is not present in penguin guano and is a minor component in seal excrement. Coprostanol/cholesterol and coprostanol/(coprostanol + cholestanol) ratios suggest that coprostanol in the sediment cores of AC2 and BI was primarily derived from bacterial hydrogenation of cholesterol introduced by penguin guano. Coprostanol in CH1 sediments is related to human sewage due to intensive research activities from 1968 to 2006 in this region. However, the low abundance of coprostanol and the ratios of coprostanol/cholesterol and coprostanol/(coprostanol + cholestanol) in a relatively oxidizing sediment core (IIL1) infer that coprostanol was likely contributed by seal settlement. Together with high-throughput sequencing of the 16S rRNA gene, the conversion of cholesterol to coprostanol by anaerobic bacteria (e.g., <i>Eubacterium coprostanoligenes</i>) could occur in anoxic aquatic systems. Our results suggest that the presence of coprostanol in Antarctic lacustrine sediment with anoxic conditions does not necessarily indicate seal activity and human waste as the microbial hydrogenation of cholesterol to coprostanol should also be considered.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 9","pages":"1107 - 1122"},"PeriodicalIF":3.9,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01121-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the global root exudate carbon flux 估算全球根外渗碳通量
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-09 DOI: 10.1007/s10533-024-01161-z
Nikhil R. Chari, Shersingh Joseph Tumber-Dávila, Richard P. Phillips, Taryn L. Bauerle, Melanie Brunn, Benjamin D. Hafner, Tamir Klein, Sophie Obersteiner, Michaela K. Reay, Sami Ullah, Benton N. Taylor
{"title":"Estimating the global root exudate carbon flux","authors":"Nikhil R. Chari,&nbsp;Shersingh Joseph Tumber-Dávila,&nbsp;Richard P. Phillips,&nbsp;Taryn L. Bauerle,&nbsp;Melanie Brunn,&nbsp;Benjamin D. Hafner,&nbsp;Tamir Klein,&nbsp;Sophie Obersteiner,&nbsp;Michaela K. Reay,&nbsp;Sami Ullah,&nbsp;Benton N. Taylor","doi":"10.1007/s10533-024-01161-z","DOIUrl":"10.1007/s10533-024-01161-z","url":null,"abstract":"<div><p>Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1–20.2) Pg C y<sup>−1</sup>, or about 9% (7–14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 7","pages":"895 - 908"},"PeriodicalIF":3.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01161-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissolved organic matter released from beach wrack is source-specific and molecularly highly diverse 海滩滩涂释放的溶解有机物具有来源特异性和分子高度多样性
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-07-09 DOI: 10.1007/s10533-024-01159-7
Hannelore Waska, Hanne M. Banko-Kubis
{"title":"Dissolved organic matter released from beach wrack is source-specific and molecularly highly diverse","authors":"Hannelore Waska,&nbsp;Hanne M. Banko-Kubis","doi":"10.1007/s10533-024-01159-7","DOIUrl":"10.1007/s10533-024-01159-7","url":null,"abstract":"<div><p>Beach wrack is an important supplier of nutrients and organic matter to sandy beach ecosystems and underlying subterranean estuaries (STEs), producing metabolic hotspots in these otherwise organic carbon- and nutrient-poor environments. To assess the impact of beach wrack type (e.g., marine, terrestrial, plant, animal) and environmental settings (e.g., tidal inundation, precipitation, and solar irradiation) on nutrient and dissolved organic matter (DOM) release, a series of leaching experiments was conducted. Quantities of leached nutrients and dissolved organic carbon (DOC) were determined, and DOM molecular composition was investigated using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Millimolar—to molar amounts of DOC and dissolved nitrogen were released from the beach cast per kg dry weight, with type of wrack and leaching medium (fresh- vs. saltwater) exerting the biggest influences. Exemplary for animal cast, jellyfish leached up to two 100-fold more, mostly organic, nitrogen compared to all other beach wrack types. FT-ICR-MS data of solid-phase extracted DOM indicated that beach wrack releases compounds with putative mono- and oligosaccharide-, amino acid- and vitamin-type molecular formulae, which likely serve as valuable substrate for heterotrophic microorganisms. DOM from the brown seaweed <i>Fucus</i> sp. was more aromatic than seawater DOM and even beach wrack of terrestrial origin, probably from structural components and secondary metabolites such as phlorotannins. We conclude that DOM and nutrient release from beach wrack strongly depends on wrack type and leaching medium, may obscure molecular provenance proxies (e.g., terrestrial indices), and adds a nutritional boost to infiltrating sea- and rainwater which likely impact microbial respiration rates in the STE.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1057 - 1078"},"PeriodicalIF":3.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01159-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands 更正:模拟植物介导的氧气输入对沿岸湿地细尺度孔隙水生物地球化学的影响很大,而对综合甲烷通量的影响较小
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-06-28 DOI: 10.1007/s10533-024-01155-x
Yongli Zhou, Teri O’Meara, Zoe G. Cardon, Jiaze Wang, Benjamin N. Sulman, Anne E. Giblin, Inke Forbrich
{"title":"Correction to: Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands","authors":"Yongli Zhou,&nbsp;Teri O’Meara,&nbsp;Zoe G. Cardon,&nbsp;Jiaze Wang,&nbsp;Benjamin N. Sulman,&nbsp;Anne E. Giblin,&nbsp;Inke Forbrich","doi":"10.1007/s10533-024-01155-x","DOIUrl":"10.1007/s10533-024-01155-x","url":null,"abstract":"","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 7","pages":"965 - 965"},"PeriodicalIF":3.9,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01155-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland 地下水渗漏是恢复湿地中反硝化和一氧化二氮排放的热点
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-06-27 DOI: 10.1007/s10533-024-01156-w
Sarah M. Klionsky, Christopher Neill, Ashley M. Helton, Beth Lawrence
{"title":"Groundwater seeps are hot spots of denitrification and N2O emissions in a restored wetland","authors":"Sarah M. Klionsky,&nbsp;Christopher Neill,&nbsp;Ashley M. Helton,&nbsp;Beth Lawrence","doi":"10.1007/s10533-024-01156-w","DOIUrl":"10.1007/s10533-024-01156-w","url":null,"abstract":"<div><p>Restorations of former cranberry farms (“bogs”) aim to re-establish native wetland vegetation, promote cold water habitat, and attenuate nitrogen (N) delivery to coastal waters. It is unclear, though, how elements of restoration design such as microtopography, groundwater interception, and plant communities affect N removal via denitrification. In a recently restored riparian cranberry bog with created microtopography, we compared denitrification potential, nitrous oxide (N<sub>2</sub>O) yield of denitrification (ratio of N<sub>2</sub>O:N<sub>2</sub>O + N<sub>2</sub> gases), in situ N<sub>2</sub>O fluxes, soil chemistry, and plant communities at the highest and lowest elevations within 20 plots and at four side-channel groundwater seeps. Denitrification potential was &gt; 2 × greater at low elevations, which had plant communities distinct from high elevations, and was positively correlated with plant species richness (Spearman’s rho = 0.43). Despite detecting high N<sub>2</sub>O yield (0.86 ± 0.16) from low elevation soils, we observed small N<sub>2</sub>O emissions in situ, suggesting minimal incomplete denitrification even in saturated depressions. Groundwater seeps had an order of magnitude higher denitrification potentials and 100–300 × greater soil NO<sub>3</sub>− concentrations than the typically saturated low elevation soils. Groundwater seeps also had high N<sub>2</sub>O yield (1.05 ± 0.15) and higher, but spatially variable, in situ N<sub>2</sub>O emissions. Our results indicate that N removal is concentrated where soils interact with NO<sub>3</sub>–rich groundwater, but other factors such as low soil carbon (C) also limit denitrification. Designing restoration features to increase groundwater residence time, particularly in low lying, species rich areas, may promote more N attenuation in restored cranberry bogs and other herbaceous riparian wetlands.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1041 - 1056"},"PeriodicalIF":3.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01156-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stemflow dissolved organic matter in mixed temperate forests: temporal and interspecific variation of optical indices and development of a stemflow-specific PARAFAC model 温带混交林中茎流溶解的有机物:光学指数的时间和种间变化以及针对茎流的 PARAFAC 模型的开发
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-06-21 DOI: 10.1007/s10533-024-01158-8
Robyn C. O’Halloran, Jennifer J. Guerard, Delphis F. Levia
{"title":"Stemflow dissolved organic matter in mixed temperate forests: temporal and interspecific variation of optical indices and development of a stemflow-specific PARAFAC model","authors":"Robyn C. O’Halloran,&nbsp;Jennifer J. Guerard,&nbsp;Delphis F. Levia","doi":"10.1007/s10533-024-01158-8","DOIUrl":"10.1007/s10533-024-01158-8","url":null,"abstract":"<div><p>Stemflow is a conduit for the transport of canopy-derived dissolved organic matter (DOM) to the forest floor. This study examined the character of stemflow DOM for four tree species over four phenophases (leafless, emergence, leafed, and senescence for deciduous species and leafed-winter, emergence, leafed- spring/summer, and senescence for coniferous species) occurring in temperate forests; namely, <i>Betula lenta</i> L. (sweet birch), <i>Fagus grandifolia</i> Ehrh. (American beech), <i>Liriodendron tulipifera</i> L. (yellow poplar), and <i>Pinus rigida</i> Mill. (pitch pine). American beech exhibited the lowest average specific UV absorbance at 254 nm (SUVA<sub>254</sub>) values, while yellow poplar displayed the highest values. SUVA<sub>254</sub> values were largest in senescence and smallest in emergence. The spectral slope ratio was lower for pitch pine than the deciduous tree species. Humification index (HIX) values decreased across all species during the emergence phenophase. The developed and validated stemflow-specific four-component parallel factor analysis (PARAFAC) model demonstrated the combined influence of interspecific and temporal fluctuations on the composition of humic and protein-like substances within stemflow. By separating and examining stemflow DOM independent of throughfall, our study provides fresh insights into the spatiotemporal dynamics of stemflow inputs to near-trunk soils that may inform hot spots and hot moments theories.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1025 - 1040"},"PeriodicalIF":3.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01158-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subtropical stormwater ponds are more frequently net nitrogen fixing compared to natural ponds 与自然池塘相比,亚热带雨水池塘更经常地净固氮
IF 3.9 3区 环境科学与生态学
Biogeochemistry Pub Date : 2024-06-13 DOI: 10.1007/s10533-024-01153-z
Audrey H. Goeckner, Ashley R. Smyth, Meredith A. Holgerson, Alexander J. Reisinger
{"title":"Subtropical stormwater ponds are more frequently net nitrogen fixing compared to natural ponds","authors":"Audrey H. Goeckner,&nbsp;Ashley R. Smyth,&nbsp;Meredith A. Holgerson,&nbsp;Alexander J. Reisinger","doi":"10.1007/s10533-024-01153-z","DOIUrl":"10.1007/s10533-024-01153-z","url":null,"abstract":"<div><p>Urban stormwater ponds (SWPs) are engineered ecosystems designed to prevent flooding and protect downstream ecosystems by retaining nutrients associated with stormwater runoff, including nitrogen (N). Despite these expectations, multiple studies have found that SWPs have low N removal efficiencies and can be sources of N to downstream ecosystems. To understand mechanisms controlling the fate of N in SWPs, we quantified dinitrogen (N<sub>2</sub>) gas saturation to characterize net N<sub>2</sub> exchange as either net denitrification or net N-fixation. We assessed temporal and spatial patterns of N<sub>2</sub> dynamics in fifteen SWPs and six naturally occurring ponds in undisturbed watersheds (Florida, USA) by sampling in two seasons (dry and wet) and from multiple depths of the water column. Samples from SWPs were equally likely to exhibit N<sub>2</sub> supersaturation (net denitrification; 50%) or undersaturation (net N-fixation; 50%). In contrast, the majority (82%) of samples from natural ponds were supersaturated with N<sub>2</sub>, indicating net denitrification. The mean SWP air–water N<sub>2</sub> flux was − 1.7 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup> (range − 500 to 433 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>), which was lower than clear (40 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range − 68 to 74 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) and humic (202 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>; range 41 to 407 μg N<sub>2</sub>-N m<sup>−2</sup> h<sup>−1</sup>) natural ponds despite considerably higher variation in SWPs. These results indicate that SWPs may have low N removal efficiencies in part due to N-fixation adding new N to the system. Overall, this study shows that SWPs are less effective than natural ponds at removing reactive N from the environment, potentially impacting downstream water quality.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 8","pages":"1007 - 1024"},"PeriodicalIF":3.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01153-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信