Biochemistry and Molecular Biology Education最新文献

筛选
英文 中文
An idea to explore: Using origami to learn molecular structure of biomolecules 一个探索的想法:用折纸来学习生物分子的分子结构。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-31 DOI: 10.1002/bmb.21871
Juan Carlos Vega-Garzón, Duverney Chaverra-Rodriguez
{"title":"An idea to explore: Using origami to learn molecular structure of biomolecules","authors":"Juan Carlos Vega-Garzón,&nbsp;Duverney Chaverra-Rodriguez","doi":"10.1002/bmb.21871","DOIUrl":"10.1002/bmb.21871","url":null,"abstract":"<p>The COVID-19 pandemic affected a large range of in-person education activities in Colombia. This created great limitations in academic performance for students with reduced access to communication technologies and deepened the educational gaps in the country. This was particularly true for sciences such as biochemistry. In Colombia, molecular structure is a subject traditionally taught through 2D drawings and static diagrams because software and 3D artifacts are not available to all students. Thus, it is essential to develop and apply strategies to study molecular structure; especially tools that are accessible and can be easily built and used at home in rural areas of the country. Here, we propose the use of origami as a tool to teach molecular structure to second year college students in Colombia. We describe the development and the implementation of the tool adjusted to students' needs regarding their visual, tactile, and other experiential learning. We included serious game elements during the implementation to engage participation and teamwork. Students' perception about the use and utility of origami to study molecular structure was favorable, highlighting its simplicity and powerfulness to help them grasp key concepts in chemistry. This motivates us to propose this idea to explore and continue improving the strategy in the classroom.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"147-154"},"PeriodicalIF":0.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of online and offline teaching mode in biochemistry and molecular biology courses 生物化学与分子生物学课程线上线下一体化教学模式。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-24 DOI: 10.1002/bmb.21877
Liucai Yang, Ya Yang, Yingling Zhu, Hu Zhang, Feixiang Teng, Xiumei Cheng, Xuan Shen, Yougen Luo, Xuebin Qu
{"title":"Integration of online and offline teaching mode in biochemistry and molecular biology courses","authors":"Liucai Yang,&nbsp;Ya Yang,&nbsp;Yingling Zhu,&nbsp;Hu Zhang,&nbsp;Feixiang Teng,&nbsp;Xiumei Cheng,&nbsp;Xuan Shen,&nbsp;Yougen Luo,&nbsp;Xuebin Qu","doi":"10.1002/bmb.21877","DOIUrl":"10.1002/bmb.21877","url":null,"abstract":"<p>To enhance the effectiveness of integrating online and offline teaching, 1545 clinical and preventive medicine students from 2019 to 2021 were randomly allocated to two groups, A and B. The curriculum was divided into two segments. Initially, two groups were established for the first segment, covering an introduction to Biomolecular and Material Metabolism. The group A adopted a teaching strategy incorporating “massive open online course + a Social Media platform (WeChat) + Project/Problem-Based Learning + Flipped classroom”, integrating online and offline methods. The group B followed conventional teaching practices. In the second course segment, which included molecular biology and clinical biochemistry, the two groups had their instructional format switched. Comparative analysis of student satisfaction, learning attitudes, and academic performance between the groups was conducted. The satisfaction survey indicated that the group which adopted the online and offline mode outperformed the conventional teaching group in satisfaction rate, satisfaction scores, excellence rate, and total scores. While both groups exhibited an improvement in learning attitudes, the teaching reform group showed a significantly higher level of enhancement. Furthermore, the reform group achieved superior overall average scores, basic average scores, comprehensive average scores, and an increased rate of excellence compared to the conventional group. The results demonstrate that adopting a blended teaching model significantly improved instructional quality and positively influenced students' engagement and attitudes in biochemistry and molecular biology studies.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"171-180"},"PeriodicalIF":0.9,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quorum sensing inhibition evaluation method: An experiment-based microbiology laboratory course 群体感应抑制评价方法:一种基于实验的微生物实验课程。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-23 DOI: 10.1002/bmb.21874
Ângelo Luís, Fernanda Domingues
{"title":"Quorum sensing inhibition evaluation method: An experiment-based microbiology laboratory course","authors":"Ângelo Luís,&nbsp;Fernanda Domingues","doi":"10.1002/bmb.21874","DOIUrl":"10.1002/bmb.21874","url":null,"abstract":"<p>Bacteria have developed a cell-to-cell communication system called quorum sensing (QS), allowing them to regulate group behavior and synchronize the expression of virulence factors, responsible for increasing their infection capacity and resistance to antimicrobials. Although the control of microbial infections through the inhibition of microbial growth has traditionally been the basis of antimicrobial chemotherapy, the emergence of antimicrobial resistance has led to the search for new microbial control strategies, namely through the inhibition of QS. Among the agents studied to inhibit this bacterial communication are essential oils (EO), which are considered very effective QS inhibitors. When searching for new QS inhibitor agents, it is essential to have a cheap and easy-to-perform method that allows the evaluation of this activity. <i>Chromobacterium violaceum</i> is a Gram-negative bacterium that has been widely used as a model organism in QS research laboratories because it produces the violet-colored pigment violacein, which is regulated by QS and is an easily observable and quantifiable characteristic marker. The objective of this work is to describe a method to evaluate the inhibition of the QS using <i>Cymbopogon martinii</i> EO as a potential inhibitory agent for violacein production by <i>C. violaceum</i>, which can be applied in the Microbiology laboratory course as a part of the programs of several science degrees. The proposed method is inexpensive and does not require specific equipment, enabling its easy implementation by the laboratory team and professors.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"191-199"},"PeriodicalIF":0.9,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The elephant in the room—Should we be teaching coding to basic science students? 房间里的大象——我们应该教基础理科学生编程吗?
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-21 DOI: 10.1002/bmb.21873
Walter Novak, Paul Craig, Michael Foster
{"title":"The elephant in the room—Should we be teaching coding to basic science students?","authors":"Walter Novak,&nbsp;Paul Craig,&nbsp;Michael Foster","doi":"10.1002/bmb.21873","DOIUrl":"10.1002/bmb.21873","url":null,"abstract":"","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 1","pages":"6-7"},"PeriodicalIF":0.9,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical laboratory class to assess gene silencing using CRISPR interference (CRISPRi) technology in the archaeon Haloferax volcanii 利用CRISPR干扰(CRISPRi)技术评估古菌Haloferax volcanii的基因沉默。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-19 DOI: 10.1002/bmb.21872
R. A. Paggi, M. C. Ferrari, M. Cerletti, M. I. Giménez, T. S. Schwarz, A. Marchfelder, R. E. De Castro
{"title":"Practical laboratory class to assess gene silencing using CRISPR interference (CRISPRi) technology in the archaeon Haloferax volcanii","authors":"R. A. Paggi,&nbsp;M. C. Ferrari,&nbsp;M. Cerletti,&nbsp;M. I. Giménez,&nbsp;T. S. Schwarz,&nbsp;A. Marchfelder,&nbsp;R. E. De Castro","doi":"10.1002/bmb.21872","DOIUrl":"10.1002/bmb.21872","url":null,"abstract":"<p>Perturbation of gene expression using RNA interference (RNAi) or CRISPR interference (CRISPRi) is a useful strategy to explore the function of essential genes. In the archaeon <i>Haloferax volcanii</i>, the CRISPR-Cas system has been adapted as a CRISPRi tool to silence the expression of specific genes. We developed a laboratory class (LC) to conceptualize gene silencing through inactivation of the <i>H. volcanii</i> LonB protease gene, a negative regulator of carotenoid pigments biosynthesis, using CRISPRi. This LC has been successfully applied in the Biology and Biochemistry of Microorganisms course for undergraduate students of Biology in 2022 and 2023. The following objectives were proposed: (a) generate <i>H. volcanii</i> mutant strains with reduced expression of the <i>lonB</i> gene using CRISPRi; (b) examine the effect of <i>lonB</i> gene silencing on cell pigmentation and growth rate; (c) assess <i>lonB</i> gene repression by Western blotting (WB). This LC allows students to obtain and screen CRISPRi silenced-mutants by means of simple procedures using a non-pathogenic organism as well as handle basic microbiology, biochemistry and molecular biology protocols. Additionally, the LC fosters social actions through collaborative work (experimental work), the interpretation and discussion of data and the ability to communicate outcomes orally and in a written format (scientific report).</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"155-164"},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of case-based learning and traditional teaching methods in advanced breast cancer education for oncology residents in the standardized training 在肿瘤学住院医师规范化培训的高级乳腺癌教育中,基于病例的学习与传统教学方法的比较。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-19 DOI: 10.1002/bmb.21875
Xinyu Gui, Anjie Zhu, Guohong Song, Huiping Li
{"title":"Comparison of case-based learning and traditional teaching methods in advanced breast cancer education for oncology residents in the standardized training","authors":"Xinyu Gui,&nbsp;Anjie Zhu,&nbsp;Guohong Song,&nbsp;Huiping Li","doi":"10.1002/bmb.21875","DOIUrl":"10.1002/bmb.21875","url":null,"abstract":"<p>Case-based learning (CBL) is a learner-centric educational approach that fosters independent learning and exploration through case analysis, guided by teachers' heuristic instruction. The study aimed to evaluate the efficacy of CBL versus traditional teaching methods in advanced breast cancer education for residents. In this randomized controlled trial, 40 residents undergoing standardized training in the Department of Breast Oncology at Peking University Cancer Hospital were enrolled and were equally divided into CBL and traditional teaching groups. Their performance, self-assessment, and course satisfaction were evaluated through post-study examinations and questionnaires. Results showed that the CBL group achieved significantly higher overall scores than the traditional teaching group (88.10 ± 3.72 vs. 85.52 ± 3.27, <i>p</i> = 0.025), with a notable advantage in clinical practice scores (44.54 ± 2.25 vs. 41.83 ± 2.26, <i>p</i> &lt; 0.001). However, theoretical knowledge scores did not differ significantly. Furthermore, the CBL group outperformed in clinical reasoning (<i>p</i> = 0.018), self-learning capabilities (<i>p</i> = 0.037), and problem-solving skills (<i>p</i> = 0.037). Satisfaction levels were higher in the CBL group (95%) compared to the traditional group (85%) without statistically significant difference. This study demonstrates the superiority of the CBL method in enhancing the education of residents in advanced breast cancer relative to traditional teaching approaches, supporting the broader application of CBL in medical oncology education.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"165-170"},"PeriodicalIF":0.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representing DNA for machine learning algorithms: A primer on one-hot, binary, and integer encodings 表示机器学习算法的DNA:单热,二进制和整数编码的入门。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-12-05 DOI: 10.1002/bmb.21870
Yash Munnalal Gupta, Satwika Nindya Kirana, Somjit Homchan
{"title":"Representing DNA for machine learning algorithms: A primer on one-hot, binary, and integer encodings","authors":"Yash Munnalal Gupta,&nbsp;Satwika Nindya Kirana,&nbsp;Somjit Homchan","doi":"10.1002/bmb.21870","DOIUrl":"10.1002/bmb.21870","url":null,"abstract":"<p>This short paper presents an educational approach to teaching three popular methods for encoding DNA sequences: one-hot encoding, binary encoding, and integer encoding. Aimed at bioinformatics and computational biology students, our learning intervention focuses on developing practical skills in implementing these essential techniques for efficient representation and analysis of genetic data. The primary goal of this study is to enhance students' understanding and practical application of DNA encoding methods, which are crucial for various computational analyses in bioinformatics. Our intervention consists of three key components: (1) a conceptual framework that contextualizes these encoding methods within broader bioinformatics applications, (2) an interactive Jupyter Notebook with Python code examples (https://github.com/yashmgupta/Representing-DNA/tree/main), and (3) a user-friendly Streamlit application for visualizing encoded sequences (https://dnaencoding.streamlit.app/) that also enables students to input their own DNA sequences and visualize the different encoding methods, further enhancing their understanding and practical experience. By combining conceptual overview with practical coding and visualization tools, our approach provides a comprehensive foundation for students to leverage these key DNA sequence encoding methods in their future work. This study contributes to bioinformatics education by offering effective, hands-on learning resources that bridge the gap between theoretical knowledge and practical application in DNA sequence analysis, preparing students for advanced research and data analysis projects in the field.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"142-146"},"PeriodicalIF":0.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the learning experience in an undergraduate course on microbial metabolism by using an illustrated story 利用图文并茂的故事改善微生物代谢本科课程的学习体验。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-11-25 DOI: 10.1002/bmb.21869
James B. McKinlay, Katherine Kearns
{"title":"Improving the learning experience in an undergraduate course on microbial metabolism by using an illustrated story","authors":"James B. McKinlay,&nbsp;Katherine Kearns","doi":"10.1002/bmb.21869","DOIUrl":"10.1002/bmb.21869","url":null,"abstract":"<p>In the classroom, metabolism is often approached and received as a mundane exercise in memorization. Teaching metabolism also faces the challenge of negative perceptions that can impede learning. We sought to improve the learning experience in an undergraduate lecture course on microbial metabolism by implementing an illustrated story that follows an <i>Escherichia coli</i> cell during a cholera outbreak. Feedback from students, compiled over four semesters of relatively minimal intervention, suggests that attitudes improved. Most students also thought that storytelling helped them learn. Exam scores suggested that the story could have had a positive performance impact for some questions that required students to apply correct details to specific situations. Our results suggest that a story could improve the learning experience in a course on a traditionally unpopular topic by both improving emotional responses to the subject matter and by providing a familiar framework upon which to contextualize details.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 2","pages":"131-141"},"PeriodicalIF":0.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cinemeducation improves early clinical exposure to inborn errors of metabolism inemeducation 可改善先天性代谢错误的早期临床表现。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-11-09 DOI: 10.1002/bmb.21868
Atanu Dutta, Aroma Oberoi, Jyoti Modi, Parmod Goyal, Sangeetha Samuel, Tanushree Mondal, Kalyan Goswami, Sibasish Sahoo, Amit Pal
{"title":"Cinemeducation improves early clinical exposure to inborn errors of metabolism","authors":"Atanu Dutta,&nbsp;Aroma Oberoi,&nbsp;Jyoti Modi,&nbsp;Parmod Goyal,&nbsp;Sangeetha Samuel,&nbsp;Tanushree Mondal,&nbsp;Kalyan Goswami,&nbsp;Sibasish Sahoo,&nbsp;Amit Pal","doi":"10.1002/bmb.21868","DOIUrl":"10.1002/bmb.21868","url":null,"abstract":"<p>Cinemeducation is an effective tool to help students develop humanistic skills. However, there was a need for more studies to find out if this can also be utilized to improve the interest and satisfaction of students learning about rare diseases such as the inborn errors of metabolism. The aim was to introduce cinemeducation as part of early clinical exposure and teach first-year MBBS students in the Department of Biochemistry about inborn errors of metabolism. This was a quasi-experimental, cross-over study involving 100 MBBS students. Movie clips prepared from Lorenzo's Oil (for Lipid metabolism) and Extraordinary Measures (for Lysosomal Storage Disease) and corresponding paper-based cases; questionnaires and feedback forms were validated by expert group review. Students' academic performance was improved in the groups where the Extraordinary Measures movie was used for cinemeducation. Still, this effect was not observed when the movie Lorenzo's Oil was used. Both learners and facilitators were satisfied with cinemeducation. Cinemeducation was effectively introduced to teach inborn errors of metabolism in the Department of Biochemistry topic-dependent manner.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 1","pages":"100-107"},"PeriodicalIF":0.9,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses 辅助多媒体学习模块的开发及其对食品生物技术课程学生学习的影响。
IF 0.9 4区 教育学
Biochemistry and Molecular Biology Education Pub Date : 2024-11-07 DOI: 10.1002/bmb.21867
Jiangyu Zhu, Zhengfei Yang, Yongqi Yin, Weiming Fang
{"title":"The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses","authors":"Jiangyu Zhu,&nbsp;Zhengfei Yang,&nbsp;Yongqi Yin,&nbsp;Weiming Fang","doi":"10.1002/bmb.21867","DOIUrl":"10.1002/bmb.21867","url":null,"abstract":"<p>The rapid growth of online education has created opportunities to integrate multimedia learning tools into complex scientific disciplines like food biotechnology. This study aimed to develop and evaluate supplementary online course modules on gene expression analysis, protein engineering tools, and fermentation genomics for undergraduate food biotechnology education. Based on cognitive load theory and multimedia learning principles, the modules incorporated focused visual media and interactive knowledge checks. The study involved 85 students in an introductory food microbiology course and 25 students in an upper-level food biochemistry elective at a large public university. Module implementation included tracking student usage through learning management system analytics, collecting qualitative feedback, and assessing learning outcomes via exam performance. Results showed that 73%–76% of students voluntarily accessed the modules, with average engagement times of 5–8 min per module. Student feedback highlighted the modules' effectiveness in clarifying textbook content through replayable examples and real-world scenarios. Comparison of exam scores revealed a 6%–10% improvement in performance on module-related items compared to overall exam averages. Qualitative feedback indicated that students found the visual representations and interactive elements helpful for clarifying complex concepts. This study demonstrates the potential of well-designed multimedia modules to support student learning in food biotechnology education, providing a model for expanding such resources in food science curricula.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"53 1","pages":"70-79"},"PeriodicalIF":0.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信