Tianming Wang , Wenjing Song , Yuan Tang , Jianfeng Yi , Haibang Pan
{"title":"Breaking the immune desert: Strategies for overcoming the immunological challenges of pancreatic cancer","authors":"Tianming Wang , Wenjing Song , Yuan Tang , Jianfeng Yi , Haibang Pan","doi":"10.1016/j.bbcan.2025.189353","DOIUrl":"10.1016/j.bbcan.2025.189353","url":null,"abstract":"<div><div>Pancreatic cancer is characterised by its highly aggressive nature and extremely poor prognosis, with a uniquely complex tumour immune microenvironment that manifests as a prototypical “immune desert.” This immune-desert phenotype primarily arises from the inherently low immunogenicity of the tumour, the formation of a dense fibrotic stroma, severe deficiency in immune cell infiltration, and profound immunosuppressive effects of the metabolic landscape. Specifically, dysregulated tryptophan metabolism, such as indoleamine 2,3-dioxygenase (IDO)-mediated catabolism, and excessive lactate accumulation contribute to impaired T-cell functionality. Collectively, these factors severely limit the efficacy of current immunotherapy strategies, particularly those based on immune checkpoint inhibitors, which have demonstrated significantly lower clinical response rates in pancreatic cancer than in other malignancies.</div><div>In response to these therapeutic challenges, this review explores integrated treatment strategies that combine metabolic reprogramming, tumour microenvironment remodelling, and next-generation immune checkpoint blockades, such as LAG-3, TIM-3, and VISTA. These emerging approaches hold substantial promise for clinical application. For example, targeting key metabolic pathways, including glycolysis (Warburg effect) and glutamine metabolism, may help restore T-cell activity by alleviating metabolic stress within the tumour milieu. Additionally, localised administration of immune stimulators such as interleukin-12 (IL-12) and CD40 agonists may enhance immune cell infiltration and promote tumour-specific immune activation.</div><div>Future research should prioritise large-scale, multicentre clinical trials to validate the therapeutic efficacy of these innovative strategies, aiming to achieve meaningful breakthroughs in pancreatic cancer immunotherapy and significantly improve long-term survival and clinical outcomes in affected patients.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 4","pages":"Article 189353"},"PeriodicalIF":9.7,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding the role of intratumoral microbiota in gastric cancer","authors":"Fenfang Gui , Limei Zhang , Jiahai Xiao , Changchun Zeng","doi":"10.1016/j.bbcan.2025.189355","DOIUrl":"10.1016/j.bbcan.2025.189355","url":null,"abstract":"<div><div>Intratumoral microbiota are increasingly recognized for their impact on gastric cancer, with growing evidence highlighting their complexity and significance. This review synthesizes current knowledge on the origins, heterogeneity, detection, and mechanistic roles of intratumoral microbiota in gastric carcinogenesis. In gastric cancer, intratumoral microbiota can originate from mucosal disruption and may migrate from normal adjacent tissues or be influenced by the TME. It exhibits spatial and functional heterogeneity within gastric cancer. Despite challenges in the detection of intratumoral microbiota, advances in deep sequencing and spatial omics have enhanced our understanding of microbial diversity and functionality. Mechanistically, intratumoral microbiota influence gastric cancer development through genetic and epigenetic alterations, signaling pathway modulation, metabolic reprogramming, and regulation of chronic inflammation and immune responses. These insights underscore the microbiota's dual function in both promoting and hindering tumor advancement. Therapeutically, the microbiota's impact on chemotherapy resistance and immune modulation presents opportunities for novel interventions. Integrating microbiome analysis into cancer research and leveraging microbial therapies may enable more effective, personalized treatment strategies. Future research should further elucidate the intricate microbe-tumor interactions to advance clinical applications and improve outcomes for gastric cancer patients.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189355"},"PeriodicalIF":9.7,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144124256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regnases play a crucial role in guarding against cancer development","authors":"Mateusz Wawro, Jakub Kochan, Aneta Kasza","doi":"10.1016/j.bbcan.2025.189352","DOIUrl":"10.1016/j.bbcan.2025.189352","url":null,"abstract":"<div><div>Transcript turnover, a fundamental process in maintaining cellular homeostasis, involves intricate interactions between cis-acting sequences and trans-acting factors. Recent advancements in RNA decay research have illuminated novel ribonucleases (RNases) and regulatory elements within mRNA untranslated regions (UTRs), shedding light on the complexity of this process. Members of the Regnase/ZC3H12/MCPIP family (Regnase-1-4) emerge as multifaceted regulators in inflammation and cancer biology. Here, we focused on studies discussing the role of Regnases in cancer. Understanding the intricate roles of Regnase family proteins provides insights into cellular homeostasis and disease pathology, offering promising avenues for targeted therapeutic interventions in inflammation-related disorders and cancer.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189352"},"PeriodicalIF":9.7,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fujing Sun , Xiaozhuo Gao , Tianming Li , Xiaoyan Zhao , Yanmei Zhu
{"title":"Tumor immune microenvironment remodeling after neoadjuvant therapy in gastric cancer: Update and new challenges","authors":"Fujing Sun , Xiaozhuo Gao , Tianming Li , Xiaoyan Zhao , Yanmei Zhu","doi":"10.1016/j.bbcan.2025.189350","DOIUrl":"10.1016/j.bbcan.2025.189350","url":null,"abstract":"<div><div>Gastric cancer (GC) is a malignant tumor with one of the highest morbidity and death rates in the world. Neoadjuvant therapy, including neoadjuvant chemotherapy (NAC) and NAC combined with immunotherapy, can improve the resection and long-term survival rates. However, not all patients respond well to neoadjuvant therapy. It has been confirmed that immune cells in the tumor immune microenvironment, including T cells, B cells, and natural killer cells, can affect the efficacy of neoadjuvant therapy. This paper summarizes current preclinical and clinical evidence to more fully describe the effects of neoadjuvant therapy on the immune microenvironment of GC, to provide the impetus to identify biomarkers to predict the potency of neoadjuvant therapy, and to identify the mechanisms of drug resistance, which should promote the development of individualized and accurate treatments for GC patients.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189350"},"PeriodicalIF":9.7,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenxuan Li , Jinghao Zhang , Yueqiu Gao , Xiaoni Kong , Xuehua Sun
{"title":"Nervous system in hepatocellular carcinoma: Correlation, mechanisms, therapeutic implications, and future perspectives","authors":"Wenxuan Li , Jinghao Zhang , Yueqiu Gao , Xiaoni Kong , Xuehua Sun","doi":"10.1016/j.bbcan.2025.189345","DOIUrl":"10.1016/j.bbcan.2025.189345","url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment. Specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189345"},"PeriodicalIF":9.7,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144038310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoshuang Niu , Beibei Li , Feiyu Luo , Wanqiong Li , Xiuman Zhou , Wenshan Zhao
{"title":"VISTA as a context-dependent immune checkpoint: Implications for tumor immunity and autoimmune pathogenesis","authors":"Xiaoshuang Niu , Beibei Li , Feiyu Luo , Wanqiong Li , Xiuman Zhou , Wenshan Zhao","doi":"10.1016/j.bbcan.2025.189351","DOIUrl":"10.1016/j.bbcan.2025.189351","url":null,"abstract":"<div><div>V-domain Ig suppressor of T cell activation (VISTA) is a recently characterized as immune checkpoint regulator with critical roles in modulating immune responses across pathological contexts. In cancer, VISTA contributes to immune evasion by sustaining an immunosuppressive tumor microenvironment, emerging as a promising target for immunotherapeutic intervention. In contrast, in autoimmune diseases, VISTA preserves peripheral immune tolerance and suppresses aberrant immune activation, thereby preventing tissue destruction. This functional dichotomy reflects the complexity of VISTA-mediated signaling, which is modulated by cellular context, microenvironmental cues, and disease stage. Recent studies have elucidated key aspects of VISTA biology, including its structural features, ligand interactions, and context-dependent expression patterns. VISTA operates as a co-inhibitory molecule in cancer, while exerting co-stimulatory or regulatory effects in autoimmunity. This review provides a comprehensive overview of VISTA's discovery, molecular mechanisms, and dual roles in cancer and autoimmune pathogenesis. Furthermore, the current status of VISTA-targeted therapeutic strategies is critically examined, highlighting the translational challenges posed by discrepancies between preclinical models and clinical trial outcomes. Finally, the potential of targeting VISTA within the broader paradigm of immune checkpoint plasticity is discussed, with emphasis on overcoming compensatory immune resistance to enhance therapeutic efficacy. A deeper mechanistic understanding of VISTA is essential for the rational design of future immunomodulatory therapies tailored to specific disease contexts.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189351"},"PeriodicalIF":9.7,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Liu , Mingyuan Song , Yan Wang , Ping Zhang , Hao Zhang
{"title":"CCL20-CCR6 signaling in tumor microenvironment: Functional roles, mechanisms, and immunotherapy targeting","authors":"Qi Liu , Mingyuan Song , Yan Wang , Ping Zhang , Hao Zhang","doi":"10.1016/j.bbcan.2025.189341","DOIUrl":"10.1016/j.bbcan.2025.189341","url":null,"abstract":"<div><div>Chemokine C<img>C motif ligand 20 (CCL20) is a molecule with immunomodulatory properties that is involved in the regulation of diseases such as chronic inflammation, autoimmune diseases, and cancer. It operates by binding to its specific receptor, C<img>C chemokine receptor type 6 (CCR6), and activating a complex intracellular signaling network. Building on its established role in inflammatory diseases, recent research has expanded our understanding of CCL20 to encompass its critical contributions to the tumor microenvironment (TME), highlighting its significance in cancer progression. Numerous studies have emphasized its prominent role in regulating immune responses. Consequently, Monoclonal antibodies against CCL20 and inhibitors of CCR6 have been successfully developed to block downstream signaling, making the CCL20-CCR6 axis a promising and critical target in the TME. This offers potential immunotherapeutic strategies for cancers. In this review, we summarize the biological consequences of CCL20-CCR6 mediated signaling, its role and mechanisms in the TME, and its potential applications. We suggest that the CCL20-CCR6 axis may be a novel biomarker for tumor diagnosis and prognosis, as well as a therapeutic target in various cancers.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189341"},"PeriodicalIF":9.7,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikolaj Marek Krupa , Tomasz Pienkowski , Anna Tankiewicz-Kwedlo , Tomasz Lyson
{"title":"Targeting the kynurenine pathway in gliomas: Insights into pathogenesis, therapeutic targets, and clinical advances","authors":"Mikolaj Marek Krupa , Tomasz Pienkowski , Anna Tankiewicz-Kwedlo , Tomasz Lyson","doi":"10.1016/j.bbcan.2025.189343","DOIUrl":"10.1016/j.bbcan.2025.189343","url":null,"abstract":"<div><div>Gliomas, the most prevalent primary brain tumors, continue to present significant challenges in oncology due to poor patient prognosis despite advances in treatment such as immunotherapy and cancer vaccines. Recent research highlights the potential of targeting tryptophan metabolism, particularly the kynurenine pathway (KP) and combinatorial approaches with immunotherapies, as a promising strategy in cancer research. The key enzymes of the kynurenine pathway, such as IDO1, IDO2, and TDO, and metabolites like kynurenine, kynurenic acid, and quinolinic acid, are implicated in fostering an immunosuppressive tumor microenvironment and promoting glioma cell survival. In glioblastoma, a highly aggressive glioma subtype, elevated IDO and TDO expression correlates with reduced survival rates. KP metabolites, such as kynurenine (KYN), 3-hydroxykynurenine (3−HK), kynurenic acid (KYNA), and quinolinic acid (QUIN), are involved in modulating immune responses, oxidative stress, neuroprotection, and neurotoxicity. This review synthesizes recent findings on the kynurenine pathway involvement in glioma pathogenesis, examining potential therapeutic targets within this pathway and discussing ongoing clinical trials that draw attention to treatments based on this pathway. Furthermore, it highlights novel findings on the post-translational modifications of kynurenine pathway enzymes and their regulatory roles, presenting their potential as therapeutic targets in gliomas.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189343"},"PeriodicalIF":9.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143924136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactions between cancer cells and tumor-associated macrophages in tumor microenvironment","authors":"Lu Liu, Yafei Li, Bo Li","doi":"10.1016/j.bbcan.2025.189344","DOIUrl":"10.1016/j.bbcan.2025.189344","url":null,"abstract":"<div><div>Tumor microenvironment (TME) refers to the local environment in which various cancer cells grow, encompassing tumor cells, adjacent non-tumor cells, and associated non-cellular elements, all of which collectively promote cancer occurrence and progression. As a principal immune component in the TME, tumor-associated macrophages (TAMs) exert a considerable influence on cancer behaviors via their interactions with cancer cells. The interactive loops between cancer cells and TAMs, including secretory factors derived from both cancer cells and TAMs, are crucial for the proliferation, stemness, drug resistance, invasion, migration, metastasis, and immune escape of various cancers. Cancer cells release paracrine proteins (HMGB1, AREG etc.), cytokines (IL-6, CCL2 etc.), RNAs (miR-21-5p, circPLEKHM1, LINC01812 etc.), and metabolites (lactic acid, succinate etc.) to regulate the polarization phenotype, mediator secretion and function of TAMs. In turn, mediators (TGF-β, IL-10, IL-6 etc.) from TAMs promote cancer progression. This review summarizes recent advancements in the interactive loops between cancer cells and TAMs in TME. Inhibiting the recruitment and M2 polarization of TAMs, reprogramming TAMs from M2 to M1 phenotype, blocking TAMs-mediated immunosuppression and immune escape, and combining with existing immunotherapy can target TAMs to overcome immunotherapy resistance in various cancers. The new breakthroughs lie in identifying effective targets for drug development, improving the drug delivery system to enhance the drug delivery efficiency, and adopting combined therapy. Interventions targeting secretory factors, cell surface receptors, intracellular signaling pathways, and metabolic modulation in the interactive loops between cancer cells and TAMs are expected to suppress cancer progression and improve therapeutic effects.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189344"},"PeriodicalIF":9.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in BRAF mutated colorectal cancer-could deoxycholic acid be the culprit?","authors":"Binle Tian , Xin Xia , Qi Li , Jian Qin","doi":"10.1016/j.bbcan.2025.189347","DOIUrl":"10.1016/j.bbcan.2025.189347","url":null,"abstract":"<div><div>BRAF mutated colorectal cancer (CRC) often demonstrates distinct molecular profiles characterized by a high methylator phenotype with two different microsatellite statuses (MSI and MSS) and corresponding methylation spectra. Prognostic disparities between these two different BRAF mutated CRC arise from divergent carcinogenic pathways, with BRAF-mutated MSS CRC exhibiting particularly unfavorable clinical outcomes. The underlying mechanism of these phenomena stems from epigenetic heterogeneity in methylation landscapes. Emerging evidences linking cholelithiasis and deoxycholic acid (DCA) to BRAF-mutated CRC pathogenesis warrant systematic investigation into their potential mechanistic relationships. Elucidating these connections could unravel novel pathogenetic pathways and inform targeted strategies for risk mitigation, molecular diagnostics, and therapeutic intervention of BRAF-mutated CRC.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189347"},"PeriodicalIF":9.7,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}