BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-123
I. Gomes, L. Simões, M. Simões
{"title":"Influence of different copper materials on biofilm control using chlorine and mechanical stress","authors":"I. Gomes, L. Simões, M. Simões","doi":"10.5194/biofilms9-123","DOIUrl":"https://doi.org/10.5194/biofilms9-123","url":null,"abstract":"The selection of materials for plumbing application has potential implications on the chemical and microbiological quality of the delivered water. This work aims to evaluate the action of materials with different copper content (0, 57, 96 and 100%) on biofilm formation and control by chlorination and mechanical stress. A strain of Stenotrophomonas maltophilia isolated from drinking water was used as model microorganism and biofilms were developed in a rotating cylinder reactor (RCR) using realism-based shear stress conditions. Biofilms were characterized phenotypically and exposed to three control strategies: 10 mg/l of free chlorine for 10 min; an increased shear stress (equivalent to 1.5 m/s of fluid velocity); and the combination of both treatments. Biofilms formed on the copper materials had lower wet mass and produced significantly lower amounts of extracellular proteins than those formed on stainless steel (0% of copper content). Although, the effects of copper materials on biofilm cell density was not significant, these materials had important impact on the efficacy of chemical and/or mechanical treatments. Biofilms formed on 96 or 100% copper materials had lower content of culturable bacteria than that observed on stainless steel after exposure to chlorine or shear stress. The mechanical treatment used had no relevant effects in biofilm control. The combination of chemical and mechanical treatments only caused higher culturability reduction than chlorine in biofilms formed on 57% copper alloy. The number of viable cells present in bulk water after biofilm treatment with chlorine was lower when biofilms were formed on any of the copper surface. The overall results are of potential importance on the selection of materials for drinking water distribution systems, particularly for house and hospital plumbing systems to overcome the effects from chlorine decay. Copper alloys may have a positive public health impact by reducing the number of viable cells in the delivered water after chlorine exposure and improving the disinfection of DW systems. Moreover, the results demonstrate that residual chlorine and mechanical stress, two strategies conventionally used for disinfection of drinking water distribution systems, failed in S. maltophilia biofilm control.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43579356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-113
C. Cardenas, R. Rusconi
{"title":"Heterogeneities in biofilms from clinical isolates under flow conditions","authors":"C. Cardenas, R. Rusconi","doi":"10.5194/biofilms9-113","DOIUrl":"https://doi.org/10.5194/biofilms9-113","url":null,"abstract":"Pancreatic cancer is the fourth leading cause of cancer death worldwide. The most common sign of presentation of pancreatic cancer is obstructive jaundice, which prevents the drainage of bile into the intestines and it is often associated with decreased survival in patients. Nowadays more than 70% of the patients with biliary obstructive jaundice is treated by biliary stenting; however, biliary stenting disrupts the natural anatomic barrier between the biliary and the gastrointestinal tract, strongly increasing the risk of a bacterial infection. Moreover, duodenal bacteria, by gaining access into the biliary system, can adhere to the stent surface and develop biofilms. Nevertheless, very little is known about the growth of biofilms on the stents and their role in infectious post-operative complications. In particular, the biliary system is an inherently fluid mechanical environment, where the gallbladder provides the driving pressure and the flow rate of the bile going through the ducts depends on the resistance between the gallbladder and the downstream end of the common bile duct. The average flow rate of the bile ranges between approximately 0.5 to 5 ml/min, which depends if the body is fasting or after a meal; this flow rate then corresponds – in the case for example of plastic stents, which are typically 2-4 mm in luminal diameter – to a maximum flow velocity of about 1-40 mm/s and to a shear rate at the inner surface of the stent of 1-80 s. Therefore, the mechanical stress induced by the bile flow in the stent is likely to play a significant role in the formation of biofilms, as shown by our data. Six clinically relevant isolates from preoperative biliary stents were selected to be grown inside microfluidic channels at different flow rates, in which bacterial attachment and biofilm dynamics were recorded and quantified. We found that fluid flow largely influences biofilm morphology in all the isolates, for which the conditions of flow and shear stress that trigger heterogeneities in biofilm structure have been determined. These results will help us to improve our understanding of biofilm formation in the presence of fluid dynamic environments and eventually consider optimal parameters of flow in the design of medical devices.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41692434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-134
C. Goetz, Nissa Niboucha, J. Jean
{"title":"Study of the ability to form biofilms of microorganisms isolated from the milk industry in Canada","authors":"C. Goetz, Nissa Niboucha, J. Jean","doi":"10.5194/biofilms9-134","DOIUrl":"https://doi.org/10.5194/biofilms9-134","url":null,"abstract":"The ability of microorganisms to form biofilms has become a major problem in the dairy industry in Canada, notably by affecting the quality and the safety of the by-products. Established biofilms are difficult to remove during the CIP cleaning system and may become resistant to sanitizers. Therefore, it is important to identify and characterize the microorganisms associated to biofilm in the Canadian dairy industry, allowing to develop improvement strategies of biofilm control. The purpose of this study is to evaluate the ability to form biofilms by spoilage microorganisms isolated in processing plants in Canada. For this purpose, 19 strains were isolated from problems associated with the formation of biofilms in the dairy industry and identified using a MALDI-TOF mass spectrometer. The single species biofilm production of these isolates was then measured after a crystal violet coloration using 96-well microplates. The results revealed different biofilm formation profiles depending of the isolates in culture medium. Indeed, 7/19 isolates are moderate or strong biofilm producers and 12/19 isolates are negative or weak biofilm producers. Furthermore, enzymatic treatments revealed that the composition of the biofilms was different depending of the species but also the isolates. In conclusion, the results suggest that some of the isolates collected in the dairy industry have the ability to produce moderate or strong biofilms and thus, to facilitate the persistence of other spoilage microorganisms but also potential pathogenic microorganisms such as Listeria monocytogenes. The characterization of those biofilms will be helpful to the development of an effective approach allowing a better control of the biofilms in the dairy industry.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47466713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-121
Shuaiqi Guo, Cameron J. Lloyd, B. Kinrade, Mustafa Sherik, I. Voets, K. Klose, P. Davies
{"title":"Blocking Vibrio cholerae-mediated hemagglutination with short peptide antagonists","authors":"Shuaiqi Guo, Cameron J. Lloyd, B. Kinrade, Mustafa Sherik, I. Voets, K. Klose, P. Davies","doi":"10.5194/biofilms9-121","DOIUrl":"https://doi.org/10.5194/biofilms9-121","url":null,"abstract":"<p>Many bacteria use repeats-in-toxin (RTX) adhesins to mediate binding to host cells and facilitate subsequent colonisation and infection by forming biofilms. Vibrio cholerae, the causative agent of cholera, uses a 230-kDa RTX adhesin, FrhA, to facilitate intestinal colonization. FrhA also mediates hemagglutination of red-blood cells (erythrocytes). Here we have demonstrated that the hemagglutination capability of FrhA is localized to a ~ 20-kDa domain near its C terminus. Bioinformatic analyses indicated this erythrocyte-binding domain (VcEBD) is 65% identical to a peptide-binding module found in the 1.5-MDa ice-binding RTX adhesin that helps its Antarctic bacterium, Marinomonas primoryensis, form symbiotic biofilms with diatoms on the underside of sea ice. This suggested that the FrhA binds V. cholerae to proteins present on the cell surface of erythrocytes. X-ray crystallography revealed that VcEBD has an oblong β-sandwich fold with a shallow, Ca<sup>2+</sup>-dependent ligand-binding cavity that can anchor a peptidyl ligand with a free terminal carboxyl group. Using a structure-guided approach, we screened a small library of ~ 60 short peptides and optimized the affinity of VcEBD’s peptidyl ligands by roughly 1,000-fold. Importantly, the high-affinity ligands are effective at blocking V. cholerae from binding to erythrocytes at nano-molar concentrations. Structures of VcEBD in complex with three different peptides further elucidated the molecular basis for their interactions, which sets the stage for the development of ligand-based antagonists that may help disrupt V. cholerae interaction with intestinal cells to prevent or treat cholera. With the spread of antibiotic-resistant pathogenic bacteria, this work sheds light on an anti-adhesion approach for combating bacterial infections without the excessive use of antibiotics.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46920311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-159
I. Gajda, Buddhi Arjuna Mendis, J. Greenman, I. Ieropoulos
{"title":"Power output enhancement in ceramic, mL-scale Microbial Fuel Cell","authors":"I. Gajda, Buddhi Arjuna Mendis, J. Greenman, I. Ieropoulos","doi":"10.5194/biofilms9-159","DOIUrl":"https://doi.org/10.5194/biofilms9-159","url":null,"abstract":"<p>A microbial fuel cell (MFC) is a renewable energy converter, which transforms organic biomass directly into electricity, using biofilm-electrode metabolic interaction within a bioelectrochemical cell. Efficiency of this transformation can be enhanced through miniaturisation. Miniaturisation of MFCs offers higher surface-area-to-volume ratio and improved mass transfer.</p>\u0000<p>The development of mL-scale; power dense and low cost MFCs, are of great interest in diverse areas of research, ranging from modern bio-robotics, internet-of-things devices, electrical energy generation, remote sensing to wastewater treatment and mineral recovery. The biofilms increased ability in converting organic pollutants into electric power more efficiently, makes mL-sized MFCs attractive for the development of multi-modular stacks and usable off-grid power sources with an ability of enhanced wastewater treatment. This work focuses on small scale MFCs; i) minimising the distance between feeding stream and the biofilm, ii) construction and analysis of a  millilitre scale prototype, using a low cost ceramic separator for higher energy recovery efficiency and sensitivity enhancement to substrates and pollutants. The study aims to test efficient cathode modifications, using graphene ink and magnetite (Fe<sub>3</sub>O<sub>4</sub>); in order to improve the oxygen reduction reaction (ORR). This in turn is envisioned in an increase of the output, reaching comparable power levels to the larger MFC prototypes tested so far. The additives are chosen such that,  both graphene and iron–based oxides are known from the literature to be catalysts for electrochemical processes, this work focusses on their incorporation into the open-to air cathode in novel, low cost MFC bioreactors.</p>\u0000<p>The miniaturised MFC construction constituted of an in-house fabricated small scale ceramic cylinder of internal volume of 3.88 mL. An anode, made of carbon veil fibre with a coating of activated carbon powder, was placed inside the ceramic cylinder, while the cathode was attached to the outer surface of the structure. Three types of cathodes were tested: i) activated carbon as the control (AC), ii) AC with a graphene ink coating (AC+G) and iii) AC with graphene ink and magnetite powder blend (AC+G+M). Experiments were conducted in triplicate using activated sludge and urine inoculum and thereafter continuously supplemented with 100% real human urine. The results show that the control produced up to 0.85 mW (219 W/m<sup>3</sup>), while AC+G produced 1.22 mW (312 W/m<sup>3</sup>), and AC+G+M 1.12 (288 W/m<sup>3</sup>) which is a 44 % and a 32 % increase respectively in comparison to the control. Comparison of linear sweep voltammetry (LSV) showed superior performance of both modified electrodes against the unmodified AC cathode; further resulting in an enhancement of ORR reaction rate. Power outputs from this work show over 14 times improvement in power density levels in comparison t","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49138848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-140
Federica Recupido, M. Petala, M. Kostoglou, S. Caserta, S. Guido, T. Karapantsios
{"title":"Wetting properties of biofilm-coated surfaces produced at controlled shear flow conditions","authors":"Federica Recupido, M. Petala, M. Kostoglou, S. Caserta, S. Guido, T. Karapantsios","doi":"10.5194/biofilms9-140","DOIUrl":"https://doi.org/10.5194/biofilms9-140","url":null,"abstract":"<p>Biofilms prevention and removal are crucial in many industrial and medical applications. Their complex and cohesive structure provides resistance to cleaning even to strong disinfectants. A key factor for their behavior is the wetting properties of their surfaces.</p>\u0000<p>The main goal of this work is to study the wetting properties of biofilms produced by bacteria <em>Pseudomonas fluorescens</em>. Biofilms are obtained on glass coupons under well controlled flow conditions, using custom-made flow cell devices. Different nutrient concentration and shear flow conditions are investigated.</p>\u0000<p>Biofilm wetting properties are examined under imposed external body forces (forced wetting) through a specialized device, named Kerberos®. Kerberos® is capable of subjecting sessile droplets to varying tilting angles and centrifugal forces while monitoring the variation of the droplet shape in X, Y and Z-directions through three Wi-Fi cameras. Wetting experiments are carried out using water-based solution (dye solution) droplets on biofilm-coated glass coupons. In this work, spreading/sliding behaviour of droplets are investigated only on horizontal substrates (no tilting) under the action of centrifugal forces. Apart from wetting properties, biofilm growth kinetics and surface morphology at different nutrient and shear flow conditions are also assessed.</p>\u0000<p>Results show that, according to the different growth conditions, biofilms present different wetting properties. At lower nutrient concentration and shear flow conditions, spreading and sliding behaviour are similar to that observed in glass coupons in the absence of biofilm. At higher nutrient and shear flow conditions, spontaneous wicking of the biofilm occurs the moment of droplet deposition on the biofilm leading to irregular and jagged shapes of droplets, while on the contrary water droplets look like smooth spherical sections on pure glass. The spontaneous wicking affects the droplet initial shape and so the wetting behaviour during the subsequent rotation tests. In each examined condition, biofilms show hydrophilic properties.</p>\u0000<p> </p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49064363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-145
Michela Castigliano, M. Petala, M. Kostoglou, S. Guido, S. Caserta, T. Karapantsios
{"title":"Pseudomonas Fluorescens biofilm in rotating annular bioreactor: formation kinetics and wetting properties","authors":"Michela Castigliano, M. Petala, M. Kostoglou, S. Guido, S. Caserta, T. Karapantsios","doi":"10.5194/biofilms9-145","DOIUrl":"https://doi.org/10.5194/biofilms9-145","url":null,"abstract":"Michela Castigliano, Maria Petala, Margaritis Kostoglou, Stefano Guido, Sergio Caserta, and Thodoris Karapantsios University of Naples Federico II, University of Naples Federico II, Chemical, Materials and Production Engineering, Italy School of Civil Engineering, University Box 10, 54 124 Thessaloniki (Greece). Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24 Thessaloniki (Greece). CEINGE, Advanced Biotechnologies, 80145 Naples (Italy) (steguido@unina.it)","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47382145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-146
Diellza Bajrami, C. Kranz, S. Fischer, H. Barth, M. C. Sportelli, N. Cioffi, B. Mizaikoff
{"title":"IR-ATR spectroscopy for in situ long-term monitoring of Lactobacillus parabuchneri biofilms","authors":"Diellza Bajrami, C. Kranz, S. Fischer, H. Barth, M. C. Sportelli, N. Cioffi, B. Mizaikoff","doi":"10.5194/biofilms9-146","DOIUrl":"https://doi.org/10.5194/biofilms9-146","url":null,"abstract":"<p>Microbial biofilms are a crucial problem in many areas including the food processing industry, biotechnology, water quality and medical scenarios. The complexity of biofilm formation and subsequent prevention strategies - requires a fundamental understanding of the involved molecular mechanisms and the possibility of long-term monitoring biofilm formation. Infrared attenuated total reflection (IR-ATR) spectroscopy is a versatile analytical technique for monitoring biofilm formation of bacteria isolates in situ, non-destructively, and close to real time as an innovative approach providing molecular insight into biofilm formation [1]. The utility of IR-ATR to investigate microorganism behavior within biofilms derives from the evanescent field penetrating few micrometers into the biofilm formed directly at the interface of a multi-reflection ATR waveguide and the sample. In the present study, isolates from food biogenic amine (BA)-producing bacteria, <em>Lactobacillus parabuchneri</em> DSM 5987 strains formed in cheese are analyzed for developing a deeper understanding on the formation of biofilms, which are significant contributors to the presence of histamine in dairy food products [2]. Infrared spectra were recorded using a custom flow-through ATR assembly for revealing the metabolism of microorganisms within such biofilms along with the effects of the substrate functionality and culture conditions on the extracellular biopolymeric matrices [3,4]. The appearance of key IR bands in the region of 1600-1200 cm<sup>-1</sup> indicates the production of lactic acid or lactate and the presence of amide groups, while most pronounced intensities in 1140-950 cm<sup>-1</sup> correspond to phospholipids, polysaccharides and nucleic acids. In this study, the spectral region between 1700 and 600 cm<sup>-1</sup> was determined to be the representative region for the identification of <em>Lactobacillus parabuchneri</em> biofilms enabling to study bioadhesion mechanisms and physico-chemical property changes during extended periods of biofilm growth. Real time monitoring has led to concrete steps for inhibition and disintegration via suitable antimicrobials by deposition on the IR inactive region of ATR waveguide. Multivariate data evaluation and classification strategies were applied to enable efficient multiparametric analysis for providing molecular information facilitating a better understanding of biofilm formation, maturation and changes in biofilm architecture via IR spectroscopic data. <br /> <br /><strong>Keywords:</strong> IR-ATR spectroscopy, <em>in situ</em> monitoring, <em>Lactobacillus parabuchneri</em>, biofilm, ATR waveguide, flow-through ATR, lactic acid, multivariate data analysis. </p>\u0000<p><br /><strong>References:</strong> [1] Stenclova P, Freisinger S, et al. <em>Appl. Spectro.</em>, <strong>2019</strong>; Vol.73 (4) 424-432 [2] Yunda E, Quilès F, et al. <em>Biofouling</em>, <strong>2019</strong>; Vol.35 (5) 494-507 [3] D","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46535456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-16
K. Fish, P. Gaskin, J. Boxall
{"title":"Residual-chlorine concentration impacts the ecology of biofilms in drinking water pipes and their water quality response","authors":"K. Fish, P. Gaskin, J. Boxall","doi":"10.5194/biofilms9-16","DOIUrl":"https://doi.org/10.5194/biofilms9-16","url":null,"abstract":"<p>Drinking water distribution systems (DWDS) are an engineered system designed to protect water quality during delivery from treatment works to consumers’ taps. Biofilms form on the vast internal surfaces of DWDS, impacting water quality by their activity and/or mobilisation into the bulk-water. Disinfection-residuals are often maintained in drinking water to mitigate planktonic microbial contamination (and associated water quality/health risks). However, the impact of residual-disinfection upon biofilms, and the subsequent unintended risk they may present to water quality, is unclear.</p>\u0000<p>To address this, an internationally-unique, temperature-controlled, full-scale DWDS test facility, fed with water from the local DWDS, was used to grow biofilms (for 28 days). The facility enables three simultaneous conditions to be run in replicate pipe loops (each ~200m long, 79mm internal diameter, PE100 pipe). Conditions studied were Low-, Medium- and High-chlorine regimes. Various water quality parameters were monitored throughout, biofilms were sampled every two weeks (n=5). Physical, chemical and molecular analyses were applied to characterise the matrix (structure and composition) and microbial communities (via analysis of bacterial 16S rRNA and fungal ITS genes) of biofilms developed under the different chlorine regimes. After growth, a “mobilisation” test was conducted simulating hydraulic changes that occur in DWDS. Biofilms from each chlorine regime were exposed to increasing shear stresses to determine any water quality degradation as a consequence of biofilm mobilisation.</p>\u0000<p>High-chlorine residual concentration during development reduced biofilm bacterial concentrations but increased inorganics and selected for unique bacterial and fungal communities. Ultimately the biofilms developed under a High-chlorine residual resulted in the greatest decrease in water quality, in response to mobilisation, and the Low-chlorine regime resulted in biofilms which had the lowest impact on water quality. These unanticipated findings suggest chlorine-boosting should be considered carefully and may actually exacerbate water quality issues. The derived understanding could impact the long-term management of DWDS water quality and biofilm, whilst challenging the current mind-set of continuous residual-disinfection control strategies.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46302996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiofilmsPub Date : 2020-07-01DOI: 10.5194/biofilms9-4
L. Ploux, Min Jin, Sophie Hellé, Cosette Betscha, J. Strub, M. Metz-Boutigue
{"title":"The versatile effect of L- and D-Cateslytin on bacteria and yeast biofilms according to configuration, medium and dose","authors":"L. Ploux, Min Jin, Sophie Hellé, Cosette Betscha, J. Strub, M. Metz-Boutigue","doi":"10.5194/biofilms9-4","DOIUrl":"https://doi.org/10.5194/biofilms9-4","url":null,"abstract":"Land D-Cateslytin (CTL) are antimicrobial peptides (AMP) derived from chromogranin A, a protein of the stress response system. Their antimicrobial properties have been thoroughly characterized and already exploited in biomaterials. However, effects on biofilms of yeast and bacteria have never been specifically addressed. We have investigated the impact of both L and D configurations of CTL on the growth of biofilms formed by Candida albicans, Escherichia coli or Staphylococcus aureus microorganisms.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45283289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}