Behavioral and Brain Functions最新文献

筛选
英文 中文
Behavioral characterization of early nicotine withdrawal in the mouse: a potential model of acute dependence 小鼠早期尼古丁戒断的行为特征:急性依赖性的潜在模型
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2024-01-13 DOI: 10.1186/s12993-024-00227-0
Baeksun Kim, Heh-In Im
{"title":"Behavioral characterization of early nicotine withdrawal in the mouse: a potential model of acute dependence","authors":"Baeksun Kim, Heh-In Im","doi":"10.1186/s12993-024-00227-0","DOIUrl":"https://doi.org/10.1186/s12993-024-00227-0","url":null,"abstract":"","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"34 3","pages":"1-12"},"PeriodicalIF":5.1,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional connectivity patterns in parosmia 抛物线的功能连接模式
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-12-19 DOI: 10.1186/s12993-023-00225-8
Divesh Thaploo, Akshita Joshi, Eren Yilmaz, Duzgun Yildirim, Aytug Altundag, Thomas Hummel
{"title":"Functional connectivity patterns in parosmia","authors":"Divesh Thaploo, Akshita Joshi, Eren Yilmaz, Duzgun Yildirim, Aytug Altundag, Thomas Hummel","doi":"10.1186/s12993-023-00225-8","DOIUrl":"https://doi.org/10.1186/s12993-023-00225-8","url":null,"abstract":"Parosmia is a qualitative olfactory dysfunction presenting as “distorted odor perception” in presence of an odor source. Aim of this study was to use resting state functional connectivity to gain more information on the alteration of olfactory processing at the level of the central nervous system level. A cross sectional study was performed in 145 patients with parosmia (age range 20–76 years; 90 women). Presence and degree of parosmia was diagnosed on the basis of standardized questionnaires. Participants also received olfactory testing using the “Sniffin’ Sticks”. Then they underwent resting state scans using a 3 T magnetic resonance imaging scanner while fixating on a cross. Whole brain analyses revealed reduced functional connectivity in salience as well as executive control networks. Region of interest-based analyses also supported reduced functional connectivity measures between primary and secondary olfactory eloquent areas (temporal pole, supramarginal gyrus and right orbitofrontal cortex; dorso-lateral pre-frontal cortex and the right piriform cortex). Participants with parosmia exhibited a reduced information flow between memory, decision making centers, and primary and secondary olfactory areas.","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"35 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138744818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment 抑制星形胶质细胞半通道可改善次声波噪声诱导的短期学习和记忆损伤
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-12-18 DOI: 10.1186/s12993-023-00226-7
Wei Zhang, Jue Yin, Bei-Yao Gao, Xi Lu, Ya-Jing Duan, Xu-Yan Liu, Ming-Zhen Li, Shan Jiang
{"title":"Inhibition of astroglial hemichannels ameliorates infrasonic noise induced short-term learning and memory impairment","authors":"Wei Zhang, Jue Yin, Bei-Yao Gao, Xi Lu, Ya-Jing Duan, Xu-Yan Liu, Ming-Zhen Li, Shan Jiang","doi":"10.1186/s12993-023-00226-7","DOIUrl":"https://doi.org/10.1186/s12993-023-00226-7","url":null,"abstract":"As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"101 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction between childhood trauma experience and TPH2 rs7305115 gene polymorphism in brain gray matter volume 童年创伤经历与 TPH2 rs7305115 基因多态性在大脑灰质体积中的相互作用
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-12-13 DOI: 10.1186/s12993-023-00224-9
Wei Li, Qian Li, Peng Zhang, Huaigui Liu, Zhaoxiang Ye
{"title":"Interaction between childhood trauma experience and TPH2 rs7305115 gene polymorphism in brain gray matter volume","authors":"Wei Li, Qian Li, Peng Zhang, Huaigui Liu, Zhaoxiang Ye","doi":"10.1186/s12993-023-00224-9","DOIUrl":"https://doi.org/10.1186/s12993-023-00224-9","url":null,"abstract":"Childhood trauma is one of the most extensively studied and well-supported environmental risk factors for the development of mental health problems. The human tryptophan hydroxylase 2 (TPH2) gene is one of the most promising candidate genes in numerous psychiatric disorders. However, it is now widely acknowledged that neither genetic variation nor environmental exposure alone can fully explain all the phenotypic variance observed in psychiatric disorders. Therefore, it is necessary to consider the interaction between the two factors in psychiatric research. We enrolled a sizable nonclinical cohort of 786 young, healthy adults who underwent structural MRI scans and completed genotyping, the Childhood Trauma Questionnaire (CTQ) and behavioural scores. We identified the interaction between childhood trauma and the TPH2 rs7305115 gene polymorphism in the gray matter volume (GMV) of specific brain subregions and the behaviour in our sample using a multiple linear regression framework. We utilized mediation effect analysis to identify environment /gene-brain-behaviour relationships. We found that childhood trauma and TPH2 rs7305115 interacted in both behaviour and the GMV of brain subregions. Our findings indicated that the GMV of the right posterior parietal thalamus served as a significant mediator supporting relationship between childhood trauma (measured by CTQ score) and anxiety scores in our study population, and the process was partly modulated by the TPH2 rs7305115 gene polymorphism. Moreover, we found only a main effect of childhood trauma in the GMV of the right parahippocampal gyrus area, supporting the relationship between childhood trauma and anxiety scores as a significant mediator. Our findings suggest that early-life trauma may have a specific and long-term structural effect on brain GMV, potentially leading to altered cognitive and emotional processes involving the parahippocampal gyrus and thalamus that may also be modulated by the TPH2 gene polymorphism. This finding highlights the importance of considering genetic factors when examining the impact of early-life experiences on brain structure and function. Gene‒environment studies can be regarded as a powerful objective supplement for targeted therapy, early diagnosis and treatment evaluation in the future.","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"17 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138627761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait. 腹内侧前额叶皮层,而不是杏仁核,对负面情绪面孔的反应可以预测贪婪的人格特征。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-12-01 DOI: 10.1186/s12993-023-00223-w
Kun Deng, Weipeng Jin, Keying Jiang, Zixi Li, Hohjin Im, Shuning Chen, Hanxiao Du, Shunping Guan, Wei Ge, Chuqiao Wei, Bin Zhang, Pinchun Wang, Guang Zhao, Chunhui Chen, Liqing Liu, Qiang Wang
{"title":"Reactivity of the ventromedial prefrontal cortex, but not the amygdala, to negative emotion faces predicts greed personality trait.","authors":"Kun Deng, Weipeng Jin, Keying Jiang, Zixi Li, Hohjin Im, Shuning Chen, Hanxiao Du, Shunping Guan, Wei Ge, Chuqiao Wei, Bin Zhang, Pinchun Wang, Guang Zhao, Chunhui Chen, Liqing Liu, Qiang Wang","doi":"10.1186/s12993-023-00223-w","DOIUrl":"10.1186/s12993-023-00223-w","url":null,"abstract":"<p><p>This study explored whether amygdala reactivity predicted the greed personality trait (GPT) using both task-based and resting-state functional connectivity analyses (n<sub>total</sub> = 452). In Cohort 1 (n = 83), task-based functional magnetic resonance imaging (t-fMRI) results from a region-of-interest (ROI) analysis revealed no direct correlation between amygdala reactivity to fearful and angry faces and GPT. Instead, whole-brain analyses revealed GPT to robustly negatively vary with activations in the right ventromedial prefrontal cortex (vmPFC), supramarginal gyrus, and angular gyrus in the contrast of fearful + angry faces > shapes. Moreover, task-based psychophysiological interaction (PPI) analyses showed that the high GPT group showed weaker functional connectivity of the vmPFC seed with a top-down control network and visual pathways when processing fearful or angry faces compared to their lower GPT counterparts. In Cohort 2, resting-state functional connectivity (rs-FC) analyses indicated stronger connectivity between the vmPFC seed and the top-down control network and visual pathways in individuals with higher GPT. Comparing the two cohorts, bilateral amygdala seeds showed weaker associations with the top-down control network in the high group via PPI analyses in Cohort 1. Yet, they exhibited distinct rs-FC patterns in Cohort 2 (e.g., positive associations of GPT with the left amygdala-top-down network FC but negative associations with the right amygdala-visual pathway FC). The study underscores the role of the vmPFC and its functional connectivity in understanding GPT, rather than amygdala reactivity.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"21"},"PeriodicalIF":5.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10690991/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138469812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specific brain imaging alterations underlying autistic traits in children with attention-deficit/hyperactivity disorder. 注意缺陷/多动障碍儿童自闭症特征的特定脑成像改变。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-11-20 DOI: 10.1186/s12993-023-00222-x
Juan Liu, Qian-Rong Liu, Zhao-Min Wu, Qiao-Ru Chen, Jing Chen, Yuan Wang, Xiao-Lan Cao, Mei-Xia Dai, Chao Dong, Qiao Liu, Jun Zhu, Lin-Lin Zhang, Ying Li, Yu-Feng Wang, Lu Liu, Bin-Rang Yang
{"title":"Specific brain imaging alterations underlying autistic traits in children with attention-deficit/hyperactivity disorder.","authors":"Juan Liu, Qian-Rong Liu, Zhao-Min Wu, Qiao-Ru Chen, Jing Chen, Yuan Wang, Xiao-Lan Cao, Mei-Xia Dai, Chao Dong, Qiao Liu, Jun Zhu, Lin-Lin Zhang, Ying Li, Yu-Feng Wang, Lu Liu, Bin-Rang Yang","doi":"10.1186/s12993-023-00222-x","DOIUrl":"10.1186/s12993-023-00222-x","url":null,"abstract":"<p><strong>Background: </strong>Autistic traits (ATs) are frequently reported in children with Attention-Deficit/Hyperactivity Disorder (ADHD). This study aimed to examine ATs in children with ADHD from both behavioral and neuroimaging perspectives.</p><p><strong>Methods: </strong>We used the Autism Spectrum Screening Questionnaire (ASSQ) to assess and define subjects with and without ATs. For behavioral analyses, 67 children with ADHD and ATs (ADHD + ATs), 105 children with ADHD but without ATs (ADHD - ATs), and 44 typically developing healthy controls without ATs (HC - ATs) were recruited. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and analyzed the mean amplitude of low-frequency fluctuation (mALFF) values (an approach used to depict different spontaneous brain activities) in a sub-sample. The imaging features that were shared between ATs and ADHD symptoms or that were unique to one or the other set of symptoms were illustrated as a way to explore the \"brain-behavior\" relationship.</p><p><strong>Results: </strong>Compared to ADHD-ATs, the ADHD + ATs group showed more global impairment in all aspects of autistic symptoms and higher hyperactivity/impulsivity (HI). Partial-correlation analysis indicated that HI was significantly positively correlated with all aspects of ATs in ADHD. Imaging analyses indicated that mALFF values in the left middle occipital gyrus (MOG), left parietal lobe (PL)/precuneus, and left middle temporal gyrus (MTG) might be specifically related to ADHD, while those in the right MTG might be more closely associated with ATs. Furthermore, altered mALFF in the right PL/precuneus correlated with both ADHD and ATs, albeit in diverse directions.</p><p><strong>Conclusions: </strong>The co-occurrence of ATs in children with ADHD manifested as different behavioral characteristics and specific brain functional alterations. Assessing ATs in children with ADHD could help us understand the heterogeneity of ADHD, further explore its pathogenesis, and promote clinical interventions.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"20"},"PeriodicalIF":5.1,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138175475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats. 绘制雄性强迫性大鼠表型的神经解剖学异常。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-11-06 DOI: 10.1186/s12993-023-00221-y
Elena Martín-González, Ángeles Prados-Pardo, Stephen J Sawiak, Jeffrey W Dalley, Daniel Padro, Pedro Ramos-Cabrer, Santiago Mora, Margarita Moreno-Montoya
{"title":"Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats.","authors":"Elena Martín-González, Ángeles Prados-Pardo, Stephen J Sawiak, Jeffrey W Dalley, Daniel Padro, Pedro Ramos-Cabrer, Santiago Mora, Margarita Moreno-Montoya","doi":"10.1186/s12993-023-00221-y","DOIUrl":"10.1186/s12993-023-00221-y","url":null,"abstract":"<p><p>Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"19"},"PeriodicalIF":5.1,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate multiscale entropy (mMSE) as a tool for understanding the resting-state EEG signal dynamics: the spatial distribution and sex/gender-related differences. 多变量多尺度熵(mMSE)作为理解静息状态EEG信号动力学的工具:空间分布和性别/性别相关差异。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-10-05 DOI: 10.1186/s12993-023-00218-7
Monika Lewandowska, Krzysztof Tołpa, Jacek Rogala, Tomasz Piotrowski, Joanna Dreszer
{"title":"Multivariate multiscale entropy (mMSE) as a tool for understanding the resting-state EEG signal dynamics: the spatial distribution and sex/gender-related differences.","authors":"Monika Lewandowska, Krzysztof Tołpa, Jacek Rogala, Tomasz Piotrowski, Joanna Dreszer","doi":"10.1186/s12993-023-00218-7","DOIUrl":"10.1186/s12993-023-00218-7","url":null,"abstract":"<p><strong>Background: </strong>The study aimed to determine how the resting-state EEG (rsEEG) complexity changes both over time and space (channels). The complexity of rsEEG and its sex/gender differences were examined using the multivariate Multiscale Entropy (mMSE) in 95 healthy adults. Following the probability maps (Giacometti et al. in J Neurosci Methods 229:84-96, 2014), channel sets have been identified that correspond to the functional networks. For each channel set the area under curve (AUC), which represents the total complexity, MaxSlope-the maximum complexity change of the EEG signal at thefine scales (1:4 timescales), and AvgEnt-to the average entropy level at coarse-grained scales (9:12 timescales), respectively, were extracted. To check dynamic changes between the entropy level at the fine and coarse-grained scales, the difference in mMSE between the #9 and #4 timescale (DiffEnt) was also calculated.</p><p><strong>Results: </strong>We found the highest AUC for the channel sets corresponding to the somatomotor (SMN), dorsolateral network (DAN) and default mode (DMN) whereas the visual network (VN), limbic (LN), and frontoparietal (FPN) network showed the lowest AUC. The largest MaxSlope were in the SMN, DMN, ventral attention network (VAN), LN and FPN, and the smallest in the VN. The SMN and DAN were characterized by the highest and the LN, FPN, and VN by the lowest AvgEnt. The most stable entropy were for the DAN and VN while the LN showed the greatest drop of entropy at the coarse scales. Women, compared to men, showed higher MaxSlope and DiffEnt but lower AvgEnt in all channel sets.</p><p><strong>Conclusions: </strong>Novel results of the present study are: (1) an identification of the mMSE features that capture entropy at the fine and coarse timescales in the channel sets corresponding to the main resting-state networks; (2) the sex/gender differences in these features.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"18"},"PeriodicalIF":5.1,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41099758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal associations between sleep traits and brain structure: a bidirectional Mendelian randomization study. 睡眠特征和大脑结构之间的因果关系:一项双向孟德尔随机化研究。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-10-02 DOI: 10.1186/s12993-023-00220-z
Qiao Wang, Shimin Hu, Lei Qi, Xiaopeng Wang, Guangyuan Jin, Di Wu, Yuke Wang, Liankun Ren
{"title":"Causal associations between sleep traits and brain structure: a bidirectional Mendelian randomization study.","authors":"Qiao Wang, Shimin Hu, Lei Qi, Xiaopeng Wang, Guangyuan Jin, Di Wu, Yuke Wang, Liankun Ren","doi":"10.1186/s12993-023-00220-z","DOIUrl":"10.1186/s12993-023-00220-z","url":null,"abstract":"<p><strong>Background: </strong>Emerging evidence suggests bidirectional causal relationships between sleep disturbance and psychiatric disorders, but the underlying mechanisms remain unclear. Understanding the bidirectional causality between sleep traits and brain imaging-derived phenotypes (IDPs) will help elucidate the mechanisms. Although previous studies have identified a range of structural differences in the brains of individuals with sleep disorders, it is still uncertain whether grey matter (GM) volume alterations precede or rather follow from the development of sleep disorders.</p><p><strong>Results: </strong>After Bonferroni correction, the forward MR analysis showed that insomnia complaint remained positively associated with the surface area (SA) of medial orbitofrontal cortex (β, 0.26; 95% CI, 0.15-0.37; P = 5.27 × 10<sup>-6</sup>). In the inverse MR analysis, higher global cortical SA predisposed individuals less prone to suffering insomnia complaint (OR, 0.89; 95%CI, 0.85-0.94; P = 1.51 × 10<sup>-5</sup>) and short sleep (≤ 6 h; OR, 0.98; 95%CI, 0.97-0.99; P = 1.51 × 10<sup>-5</sup>), while higher SA in posterior cingulate cortex resulted in a vulnerability to shorter sleep durations (β, - 0.09; 95%CI, - 0.13 to - 0.05; P = 1.21 × 10<sup>-5</sup>).</p><p><strong>Conclusions: </strong>Sleep habits not only result from but also contribute to alterations in brain structure, which may shed light on the possible mechanisms linking sleep behaviours with neuropsychiatric disorders, and offer new strategies for prevention and intervention in psychiatric disorders and sleep disturbance.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"17"},"PeriodicalIF":5.1,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-being is associated with cortical thickness network topology of human brain. 幸福感与人脑皮层厚度网络拓扑结构有关。
IF 5.1 2区 心理学
Behavioral and Brain Functions Pub Date : 2023-09-25 DOI: 10.1186/s12993-023-00219-6
Yubin Li, Chunlin Li, Lili Jiang
{"title":"Well-being is associated with cortical thickness network topology of human brain.","authors":"Yubin Li, Chunlin Li, Lili Jiang","doi":"10.1186/s12993-023-00219-6","DOIUrl":"10.1186/s12993-023-00219-6","url":null,"abstract":"<p><strong>Background: </strong>Living a happy and meaningful life is an eternal topic in positive psychology, which is crucial for individuals' physical and mental health as well as social functioning. Well-being can be subdivided into pleasure attainment related hedonic well-being or emotional well-being, and self-actualization related eudaimonic well-being or psychological well-being plus social well-being. Previous studies have mostly focused on human brain morphological and functional mechanisms underlying different dimensions of well-being, but no study explored brain network mechanisms of well-being, especially in terms of topological properties of human brain morphological similarity network.</p><p><strong>Methods: </strong>Therefore, in the study, we collected 65 datasets including magnetic resonance imaging (MRI) and well-being data, and constructed human brain morphological network based on morphological distribution similarity of cortical thickness to explore the correlations between topological properties including network efficiency and centrality and different dimensions of well-being.</p><p><strong>Results: </strong>We found emotional well-being was negatively correlated with betweenness centrality in the visual network but positively correlated with eigenvector centrality in the precentral sulcus, while the total score of well-being was positively correlated with local efficiency in the posterior cingulate cortex of cortical thickness network.</p><p><strong>Conclusions: </strong>Our findings demonstrated that different dimensions of well-being corresponded to different cortical hierarchies: hedonic well-being was involved in more preliminary cognitive processing stages including perceptual and attentional information processing, while hedonic and eudaimonic well-being might share common morphological similarity network mechanisms in the subsequent advanced cognitive processing stages.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"19 1","pages":"16"},"PeriodicalIF":5.1,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信