{"title":"Hilbert repulsion in the Kerr–Newman anti-de Sitter spacetime","authors":"Chiging Lasa Polo, Heisnam Shanjit Singh","doi":"10.1007/s10509-024-04304-8","DOIUrl":"10.1007/s10509-024-04304-8","url":null,"abstract":"<div><p>In this work, we investigate the existence of Hilbert or gravitational repulsion of a test charged particle near the Kerr–Newman anti-de Sitter black hole. We found that the dynamical motion of the test charged particle is significantly affected by the black hole charge and spin, probably due to the electrostatic interaction and the curvature behaviour of spacetime. We also obtain the various conditions under which a freely falling test particle towards the black hole experiences the Hilbert repulsion or attraction as viewed by a distant observer.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140795789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trajectory optimization of flybys of multiple irregular satellites of Jupiter with Galilean moons gravity assist","authors":"Quan Jing, Zhixin Hao, Mingtao Li","doi":"10.1007/s10509-024-04305-7","DOIUrl":"10.1007/s10509-024-04305-7","url":null,"abstract":"<div><p>The irregular satellites within the Jupiter system hold high scientific value due to their potential to contain clues about the early evolution of the solar system. This paper proposes an optimization algorithm for multiple irregular satellites flyby trajectories, which includes the powered gravity assist from Galilean moons. The algorithm is based on beam search and uses virtual trajectories to determine potential flyby targets, solving for trajectories that satisfy constraints on velocity increment, mission duration, and perijove radius. By changing the initial orbital period and optimizing the number of branches with Galilean moon gravity assist during branching, and comparing with the case without Galilean moon gravity assist, the effects of these factors on the number of irregular satellite flybys are summarized. The simulation results show that the algorithm can effectively solve for orbits that flyby multiple irregular satellites for initial orbits of different periods. The three trajectories obtained can serve as references for future missions.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thrust continuation of time-optimal orbital transfers with soft terminal conditions","authors":"Yang Wang, Xiyun Hou, Francesco Topputo","doi":"10.1007/s10509-024-04303-9","DOIUrl":"10.1007/s10509-024-04303-9","url":null,"abstract":"<div><p>Time-optimal orbital transfers with soft terminal conditions are studied in this work. First, a two-layer thrust continuation method is devised. The unfavorable thrust continuation path is handled by switching between different solution curves. Second, the proposed method is applied to solving time-optimal transfers under two- or three-body dynamics with Cartesian coordinates to verify its effectiveness. The near conservation of the product between the time of flight and the thrust level is observed for general orbital transfers. A linear variation of this quantity with eccentricity is also illustrated when the difference in eccentricity between the initial and terminal orbits is large enough.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An evolution of the universe based on a modified time-redshift relation can avoid the introduction of a cosmological constant","authors":"Elmo Benedetto, Luca D’Errico, Antonio Feoli","doi":"10.1007/s10509-024-04301-x","DOIUrl":"10.1007/s10509-024-04301-x","url":null,"abstract":"<div><p>Inspired by the recent literature, we study the Einstein–de Sitter cosmological model coupled with a generalization of the relation between the redshift and time dilation of the kind <span>(delta t_{0} = delta t_{e} (1+z)^{n})</span>. We find that this model fits the experimental data regarding 1048 supernovae, in a way which is competitive with the standard <span>(Lambda mathrm{CDM})</span> model and without the need of introducing a non-zero cosmological constant. Since the existence of dark energy, as a main ingredient of the composition of the cosmos, is still under debate, we propose our formalism as an example of an alternative description of the cosmological scenario.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DIAT-DSCNN-ECA-Net: separable convolutional neural network-based classification of galaxy morphology","authors":"Ajay Waghumbare, Upasna Singh, Shubham Kasera","doi":"10.1007/s10509-024-04302-w","DOIUrl":"10.1007/s10509-024-04302-w","url":null,"abstract":"<div><p>There will be an unprecedented increase in the number of galaxies observed as a result of the current and upcoming surveys. Consequently, data-driven approaches have become the main tools for deciphering and evaluating this massive volume of data. Computer vision combined with deep learning has proven most effective for recognizing galaxy morphology but most of the conventional deep learning models are large in terms of parameters due to which computational cost, risk of overfitting increases. In this paper, we proposed a lightweight convolutional neural network (CNN) model using separable convolution which helps to reduce trainable parameters of the model. Further, Efficient Channel Attention (ECA) mechanism is used to focus on important features. ECA focuses on features channel wise without dimensionality reduction which reduces the computational overhead. Performance of proposed model named as “DIAT-DSCNN-ECA-Net” is evaluated on two datasets such as Galaxy Zoo 2, Galaxy Zoo DECaLS, each having seven different types of galaxies, achieved an accuracy of 90.81% and 94.17% respectively at the cost of 1.8 Mega-Byte model size, 0.13 million parameters, 1.04 Floating Point Operations (FLOPs). The outcomes of the experiments demonstrate that the proposed approach can outperform the existing CNN models.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the time calibration method of the YangBaJing Hybrid Array","authors":"Shaozhang Zhao, Tianlu Chen, Qi Gao, Youliang Feng","doi":"10.1007/s10509-024-04299-2","DOIUrl":"10.1007/s10509-024-04299-2","url":null,"abstract":"<div><p>The YangBaJing Hybrid Array (YBJ-HA) is located at the Yangbajing international cosmic ray observatory, Tibet, China. It consists of 115 scintillation detectors (SDs) and 16 underground water Cherenkov muon detectors (MDA). Its main physical goal is to observe the <span>(gamma )</span>-ray sources in the 100 TeV energy region, so the array must have very good pointing accuracy. To achieve this performance, the time response of the scintillator detectors must have high consistency. This paper introduces a characteristic plane method (offline calibration method) to calibrate the time of each scintillator detector and uses the moon shadow analysis results to test the time calibration accuracy.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon-chain chemistry in the interstellar medium","authors":"Kotomi Taniguchi, Prasanta Gorai, Jonathan C. Tan","doi":"10.1007/s10509-024-04292-9","DOIUrl":"10.1007/s10509-024-04292-9","url":null,"abstract":"<div><p>The presence of carbon-chain molecules in the interstellar medium (ISM) has been known since the early 1970s and <span>(>130)</span> such species have been identified to date, making up <span>(sim 43)</span>% of the total of detected ISM molecules. They are prevalent not only in star-forming regions in our Galaxy but also in other galaxies. These molecules provide important information on physical conditions, gas dynamics, and evolutionary stages of star-forming regions. Larger species of polycyclic aromatic hydrocarbons (PAHs) and fullerenes (C<sub>60</sub> and C<sub>70</sub>), which may be related to the formation of the carbon-chain molecules, have been detected in circumstellar envelopes around carbon-rich Asymptotic Giant Branch (AGB) stars and planetary nebulae, while PAHs are also known to be a widespread component of the ISM in most galaxies. Recently, two line survey projects toward Taurus Molecular Cloud-1 with large single-dish telescopes have detected many new carbon-chain species, including molecules containing benzene rings. These new findings raise fresh questions about carbon-bearing species in the Universe. This article reviews various aspects of carbon-chain molecules, including observational studies, chemical simulations, quantum calculations, and laboratory experiments, and discusses open questions and how future facilities may answer them.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04292-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jacob Oloketuyi, Yu Liu, Abouazza Elmhamdi, Fengrong Zhu, Linhua Deng
{"title":"Understanding the long-term evolution of green line coronal emission and its relation to the sunspots","authors":"Jacob Oloketuyi, Yu Liu, Abouazza Elmhamdi, Fengrong Zhu, Linhua Deng","doi":"10.1007/s10509-024-04300-y","DOIUrl":"10.1007/s10509-024-04300-y","url":null,"abstract":"<div><p>Significant association between flux emergence and the complexity of the involved processes in the solar corona could be substantial in estimating magnetic field activities and related driving mechanisms. In this study, we analysed solar magnetic activity in the time period between 1939 and 2022, covering solar cycles 17 to the present cycle 25. Our study was principally based on green coronal intensity, which was calculated using observations collected from a global network of coronal stations. Specifically, we utilized the homogenized Fe XIV 530.3 nm coronal emission line provided by the Astronomical Institute of the Slovak Academy of Sciences, as well as of the International Sunspot number index. The analyses were carried out using the Cross-Correlation and Empirical Mode Decomposition techniques. Firstly, the study found that there are strong and positive correlations between the two indices, with high coefficients specifically during the examined solar cycles. Secondly, the empirical mode decomposition technique reveals unique properties of the intrinsic mode functions (IMFs), highlighting distinctions between the emergence of sunspots and green coronal emissions based on their various modulations. Indeed, these IMFs are most likely closely linked to the magnetic flux rope structure and indirectly connected with the emergence of sunspot events. The observed lag between MCI and the SSN could potentially be linked to the dynamics between coronal response time and the evolutions of active regions. Furthermore, there is a steady decrease observed in the green coronal index from solar cycle 17 to the current cycle 25 that could be attributed to waning behaviour of solar magnetic field strength. This decline can also be regarded as evidence of the Centennial Gleissberg solar activity cycle during the descending phase. Interestingly, the green coronal index exhibits a significant degree of phase synchronization with sunspot numbers, suggesting that the intricate relationship between green coronal intensity and sunspot numbers can be potentially driven by processes such as heating, the formation of active coronal regions, and the emergence of magnetic flux.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Search and study of young infrared stellar clusters","authors":"Naira Azatyan","doi":"10.1007/s10509-024-04298-3","DOIUrl":"10.1007/s10509-024-04298-3","url":null,"abstract":"<div><p>The main aim of this paper is to study both the Interstellar Medium (ISM) and the young stellar population in the three star-forming regions, namely IRAS 05137+3919, 05168+3634, and 19110+1045. The study of the ISM includes determination of the hydrogen column density (N(H<sub>2</sub>)) and dust temperature (T<sub><i>d</i></sub>) in the regions using modified blackbody fitting. The main parameters of the identified and classified young stellar objects (YSOs) belonging to the regions were determined by comparing with the radiation-transfer models. We also constructed a color–magnitude diagram to compare the parameters of the YSOs with the results of the radiative-transfer models. The three stellar populations appear to have formed under different scenarios. In the cases of IRAS 05137+3919 and IRAS 05168+3634, the age spread is considerably wider, suggesting that the stellar population likely emerged from independent condensations. In contrast, the third region comprises a pair of ultracompact HII regions (UCHIIs), G45.12+0.13 and G45.07+0.13, with a notably smaller age spread. This hints at the possibility that these clusters originated from a single triggering event.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polarization variability of blazars in the optical emission","authors":"Yu-Hai Yuan, Guan-Zhu Ding, Feng-Jie Wu","doi":"10.1007/s10509-024-04293-8","DOIUrl":"10.1007/s10509-024-04293-8","url":null,"abstract":"<div><p>Polarization studies in blazars are effective tools for analyzing the emission composition and the relativistic jet. In this work, we collected photometric and polarization data from the Steward Observatory Blazar Monitoring Program and performed the following studies. (1) Among the 10 target sources, 8 sources exhibit correlations between the polarization variability (<span>(P)</span>) and <span>(V)</span>-lightcurves (<span>(F_{V})</span>). (2) When we use the multiorder power law function to fit <span>(P)</span> and <span>(F_{V})</span>, we obtain several parameters, including the brightening timescale (<span>(Delta T_{b})</span>) and the dimming timescale (<span>(Delta T_{d})</span>). In the brightening stage, <span>(Delta T_{P|b})</span> and <span>(Delta T_{F|b})</span> were correlated, with a correlation coefficient of <span>(r=0.45)</span>, and a chance probability of <span>(p=0.30%)</span>. In the dimming stage, <span>(Delta T_{P|d})</span> and <span>(Delta T_{F|d})</span> exhibited weak correlations. (3) To analyze the origin of the polarization, we study the dependence of polarization on spectral index.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}