Josep M. Trigo-Rodríguez, Damya Souami, Maria Gritsevich, Marcin Wesołowski, Gennady Borisov
{"title":"Cometary observations in light-polluted environments: a case study of interstellar comet 2I/Borisov","authors":"Josep M. Trigo-Rodríguez, Damya Souami, Maria Gritsevich, Marcin Wesołowski, Gennady Borisov","doi":"10.1007/s10509-025-04424-9","DOIUrl":null,"url":null,"abstract":"<div><p>Comets and asteroids have long captured human curiosity, and until recently, all documented examples belonged to our Solar System. That changed with the discovery of the first known interstellar object, 1I/2017 U1 (‘Oumuamua), in 2017. Two years later, on August 30, 2019, Gennady Borisov discovered a second interstellar object, 2019 Q4, which was officially designated 2I/Borisov. From its initial images, the object’s diffuse appearance hinted at its cometary nature. To better understand the photometric evolution of comet 2I/Borisov as it traveled through the inner Solar System, we compiled observations using medium-sized telescopes. This data is crucial for gaining insights into its size and composition, as well as how such objects, after millions of years in interstellar space, behave when exposed to the Sun’s radiation. Given that 2I/Borisov is the first interstellar comet ever observed, constraining its behavior is of great scientific interest. In this paper, we present photometric data gathered from observatories in Crimea and Catalonia, highlighting the importance of systematic photometric studies of interstellar objects using meter-class telescopes. Our observations showed a steady increase in the comet’s brightness as it approached perihelion, likely due to the slow sublimation of ices. Over the five-month pre-perihelion observation period, we did not detect any significant changes in magnitude. The analysis of observations reveals a steady increase in comet 2I/Borisov brightness as it approached perihelion, likely due to the sublimation of ices, with no observable outbursts during the five-month pre-perihelion period. Additionally, we discuss the challenges in ground-based observation of comets posed by light pollution today, particularly in urban areas, where visual observations are severely limited. Using sample surface brightness measurements, we demonstrate the impact of light pollution and outline the importance of systematic photometric studies for interstellar objects.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04424-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04424-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Comets and asteroids have long captured human curiosity, and until recently, all documented examples belonged to our Solar System. That changed with the discovery of the first known interstellar object, 1I/2017 U1 (‘Oumuamua), in 2017. Two years later, on August 30, 2019, Gennady Borisov discovered a second interstellar object, 2019 Q4, which was officially designated 2I/Borisov. From its initial images, the object’s diffuse appearance hinted at its cometary nature. To better understand the photometric evolution of comet 2I/Borisov as it traveled through the inner Solar System, we compiled observations using medium-sized telescopes. This data is crucial for gaining insights into its size and composition, as well as how such objects, after millions of years in interstellar space, behave when exposed to the Sun’s radiation. Given that 2I/Borisov is the first interstellar comet ever observed, constraining its behavior is of great scientific interest. In this paper, we present photometric data gathered from observatories in Crimea and Catalonia, highlighting the importance of systematic photometric studies of interstellar objects using meter-class telescopes. Our observations showed a steady increase in the comet’s brightness as it approached perihelion, likely due to the slow sublimation of ices. Over the five-month pre-perihelion observation period, we did not detect any significant changes in magnitude. The analysis of observations reveals a steady increase in comet 2I/Borisov brightness as it approached perihelion, likely due to the sublimation of ices, with no observable outbursts during the five-month pre-perihelion period. Additionally, we discuss the challenges in ground-based observation of comets posed by light pollution today, particularly in urban areas, where visual observations are severely limited. Using sample surface brightness measurements, we demonstrate the impact of light pollution and outline the importance of systematic photometric studies for interstellar objects.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.