地月系统向逆行共轨道的最佳转移研究

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
G. A. Caritá, M. H. M. Morais, S. Aljbaae, A. F. B. A. Prado
{"title":"地月系统向逆行共轨道的最佳转移研究","authors":"G. A. Caritá,&nbsp;M. H. M. Morais,&nbsp;S. Aljbaae,&nbsp;A. F. B. A. Prado","doi":"10.1007/s10509-025-04427-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent findings on retrograde co-orbital mean-motion resonances in the Earth-Moon system, highlight the potential use of spacecraft in retrograde resonances. Based on these discoveries, this study investigates retrograde co-orbital resonances within the Earth-Moon system, focusing on both optimal and sub-optimal orbital transfers to such configurations. The paper provides a comprehensive analysis of retrograde co-orbital resonances, optimization techniques to evaluate and enhance the performance of bi-impulsive transfers to these configurations. The results reveal the feasibility of low-cost transfers, which could support a range of future missions, including space exploration and satellite deployment. Combining advanced optimization processes, we obtained solutions for orbital transfers for different arrival points in retrograde co-orbitals improving mission efficiency and offering a cost-effective approach to interplanetary exploration.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of optimal transfers to retrograde co-orbital orbits in the Earth-Moon system\",\"authors\":\"G. A. Caritá,&nbsp;M. H. M. Morais,&nbsp;S. Aljbaae,&nbsp;A. F. B. A. Prado\",\"doi\":\"10.1007/s10509-025-04427-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent findings on retrograde co-orbital mean-motion resonances in the Earth-Moon system, highlight the potential use of spacecraft in retrograde resonances. Based on these discoveries, this study investigates retrograde co-orbital resonances within the Earth-Moon system, focusing on both optimal and sub-optimal orbital transfers to such configurations. The paper provides a comprehensive analysis of retrograde co-orbital resonances, optimization techniques to evaluate and enhance the performance of bi-impulsive transfers to these configurations. The results reveal the feasibility of low-cost transfers, which could support a range of future missions, including space exploration and satellite deployment. Combining advanced optimization processes, we obtained solutions for orbital transfers for different arrival points in retrograde co-orbitals improving mission efficiency and offering a cost-effective approach to interplanetary exploration.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04427-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04427-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

最近关于地月系统逆行共轨道平均运动共振的发现,突出了航天器在逆行共振中的潜在用途。基于这些发现,本研究调查了地月系统内的逆行共轨道共振,重点关注这种配置的最佳和次最佳轨道转移。本文提供了一个全面的分析逆行共轨道共振,优化技术,以评估和提高双脉冲转移到这些构型的性能。结果揭示了低成本转移的可行性,它可以支持一系列未来的任务,包括空间探索和卫星部署。结合先进的优化过程,得到了逆行共轨道不同到达点的轨道转移解,提高了任务效率,为行星际探测提供了一种经济有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of optimal transfers to retrograde co-orbital orbits in the Earth-Moon system

Recent findings on retrograde co-orbital mean-motion resonances in the Earth-Moon system, highlight the potential use of spacecraft in retrograde resonances. Based on these discoveries, this study investigates retrograde co-orbital resonances within the Earth-Moon system, focusing on both optimal and sub-optimal orbital transfers to such configurations. The paper provides a comprehensive analysis of retrograde co-orbital resonances, optimization techniques to evaluate and enhance the performance of bi-impulsive transfers to these configurations. The results reveal the feasibility of low-cost transfers, which could support a range of future missions, including space exploration and satellite deployment. Combining advanced optimization processes, we obtained solutions for orbital transfers for different arrival points in retrograde co-orbitals improving mission efficiency and offering a cost-effective approach to interplanetary exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信