Atmospheric Chemistry and Physics最新文献

筛选
英文 中文
Terrestrial runoff is an important source of biological INPs in Arctic marine systems 陆地径流是北极海洋系统中生物 INPs 的重要来源
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-04 DOI: 10.5194/egusphere-2024-1633
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Maire, Thomas Juul-Pedersen, Kai Finster, Tina Šantl-Temkiv
{"title":"Terrestrial runoff is an important source of biological INPs in Arctic marine systems","authors":"Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Maire, Thomas Juul-Pedersen, Kai Finster, Tina Šantl-Temkiv","doi":"10.5194/egusphere-2024-1633","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1633","url":null,"abstract":"<strong>Abstract.</strong> The accelerated warming of the Arctic manifests in sea ice loss and melting glaciers, significantly altering the dynamics of marine biota. This disruption in marine ecosystems can lead to the emission of biological ice nucleating particles (INPs) from the ocean into the atmosphere. Once airborne, these INPs induce cloud droplet freezing, thereby affecting cloud lifetime and radiative properties. Despite the potential atmospheric impacts of marine INPs, their properties and sources remain poorly understood. Analysing sea bulk water and the sea surface microlayer in two southwest Greenlandic fjords, collected between June and September 2018, and investigating the INPs along with the microbial communities, we could demonstrate a clear seasonal variation in the number of INPs and a notable input from terrestrial runoff. We found the highest INP concentration in June during the late stage of the phytoplankton bloom and active melting processes causing enhanced terrestrial runoff. These highly active INPs were smaller in size and less heat-sensitive than those found later in the summer and those previously identified in Arctic marine systems. A negative correlation between salinity and INP abundance suggests freshwater input as sources of INPs. Stable oxygen isotope analysis, along with the strong correlation between INPs and the presence of the bacterium <em>Aquaspirillum arcticum</em>, highlighted meteoric water as the primary origin of the freshwater influx, suggesting that the notably active INPs originate from terrestrial sources such as glacial and soil runoff.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"39 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China 测量报告:过渡金属离子对类腐殖质(HULIS)光学特性的影响揭示了一种结构偏好--中国北京 PM2.5 案例研究
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-04 DOI: 10.5194/acp-24-7575-2024
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, Xinming Wang
{"title":"Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China","authors":"Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, Xinming Wang","doi":"10.5194/acp-24-7575-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7575-2024","url":null,"abstract":"Abstract. Humic-like substances (HULIS) are complex macromolecules in water-soluble organic compounds (WSOCs) containing multiple functional groups, and transition metal ions (TMs) are ubiquitous in atmospheric particles. In this study, potential physical and chemical interactions between HULIS and four TM species, including Cu2+, Mn2+, Ni2+, and Zn2+, were analyzed by optical method under acidic, weakly acidic, and neutral conditions. The results showed that Cu2+, Mn2+, and Zn2+ only slightly enhanced mass absorption efficiency (MAE365) of HULIS in winter and had indiscernible effects on the absorption Ångström exponent (AAE) of HULIS in both seasons under all acidity conditions. All four TMs had fluorescence quenching effects on winter HULIS, and only Cu2+ had similar effects on summer HULIS, with the highest quenching coefficients found under weakly acidic conditions in both seasons. The 1H-nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) spectra revealed that Cu2+ mainly bound with aromatic species and tightened the molecule structures of HULIS. The parallel factor analysis (PARAFAC) results extracted four components of HULIS, including low-oxidized humic-like substances (C1), N-containing compounds (C2), highly oxidized humic-like substances (C3), and the mixing residuals (C4), from the fluorescence spectra in both winter and summer. The spectral characteristic of HULIS with Cu2+ additions under three acidity conditions indicated that electron-donating groups of HULIS mainly corresponded to C1 and C3, with Cu2+ binding with HULIS by replacing protons, while electron-withdrawing groups of HULIS could correspond to C2, with its connection with Cu2+ through electrostatic adsorption or colliding-induced energy transfer.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"28 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Impacts of Marine Aerosols over the Southeast Atlantic Ocean using a chemical transport model: Implications for aerosol-cloud interactions 利用化学传输模型量化东南大西洋海洋气溶胶的影响:气溶胶-云相互作用的影响
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-04 DOI: 10.5194/egusphere-2024-1948
Mashiat Hossain, Rebecca M. Garland, Hannah M. Horowitz
{"title":"Quantifying the Impacts of Marine Aerosols over the Southeast Atlantic Ocean using a chemical transport model: Implications for aerosol-cloud interactions","authors":"Mashiat Hossain, Rebecca M. Garland, Hannah M. Horowitz","doi":"10.5194/egusphere-2024-1948","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1948","url":null,"abstract":"<strong>Abstract.</strong> The southeast Atlantic region, characterized by persistent stratocumulus clouds, has one of the highest uncertainties in aerosol radiative forcing and significant variability across climate models. In this study, we analyze the seasonally varying role of marine aerosol sources and identify key uncertainties in aerosol composition at cloud-relevant altitudes over the southeast Atlantic using the GEOS-Chem chemical transport model. We evaluate simulated aerosol optical depth (AOD) and speciated aerosol concentrations against those collected from ground observations and aircraft campaigns such as LASIC, ORACLES, and CLARIFY, conducted during 2017. The model consistently underestimates AOD relative to AERONET, particularly at remote locations like Ascension Island. However, when compared with aerosol mass concentrations from aircraft campaigns during the biomass burning period, it performs adequately at cloud-relevant altitudes, with a normalized mean bias (NMB) between −3.5 % (CLARIFY) and −7.5 % (ORACLES). At these altitudes, organic aerosols (63 %) dominate during the biomass burning period, while sulfate (41 %) prevails during austral summer, when dimethylsulfide (DMS) emissions peak in the model. Our findings indicate that marine sulfate can account for up to 69 % of total sulfate during high DMS period. Sensitivity analyses indicate that refining DMS emissions and oxidation chemistry may increase sulfate aerosol produced from marine sources, highlighting their overall importance. Additionally, we find marine primary organic aerosol emissions may substantially increase total organic aerosol concentrations, particularly during austral summer. This study underscores the imperative need to refine marine emissions and their chemical transformations to better predict aerosol-cloud interactions and reduce uncertainties in aerosol radiative forcing over the southeast Atlantic.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"39 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the Asian summer monsoon play a role in the stratospheric aerosol budget of the Arctic? 亚洲夏季季风是否在北极平流层气溶胶预算中发挥作用?
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/acp-24-7535-2024
Sandra Graßl, Christoph Ritter, Ines Tritscher, Bärbel Vogel
{"title":"Does the Asian summer monsoon play a role in the stratospheric aerosol budget of the Arctic?","authors":"Sandra Graßl, Christoph Ritter, Ines Tritscher, Bärbel Vogel","doi":"10.5194/acp-24-7535-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7535-2024","url":null,"abstract":"Abstract. The Asian summer monsoon has a strong convectional component with which aerosols are able to be lifted up into the lower stratosphere. Due to usually long lifetimes and long-range transport aerosols remain there much longer than in the troposphere and are also able to be advected around the globe. Our aim of this study is a synergy between simulations by Chemical Lagrangian Model of the Stratosphere (CLaMS) and KARL (Koldewey Aerosol Raman Lidar) at AWIPEV, Ny-Ålesund in the Arctic, by comparing CLaMS results with exemplary days of lidar measurements as well as analyzing the stratospheric aerosol background. We use global three-dimensional Lagrangian transport simulations including surface origin tracers as well as back trajectories to identify source regions of the aerosol particles measured over Ny-Ålesund. We analyzed lidar data for the year 2021 and found the stratosphere generally clear, without obvious aerosol layers from volcanic eruptions or biomass burnings. Still an obvious annual cycle of the backscatter coefficient with higher values in late summer to autumn and lower values in late winter has been found. Results from CLaMS model simulations indicate that from late summer to early autumn filaments with high fractions of air which originate in South Asia – one of the most polluted regions in the world – reach the Arctic at altitudes between 360 and 380 K potential temperature. We found a coinciding measurement between the overpass of such a filament and lidar observations, and we estimated that backscatter and depolarization increased by roughly 15 % during this event compared to the background aerosol concentration. Hence we demonstrate that the Asian summer monsoon is a weak but measurable source for Arctic stratospheric aerosol in late summer to early autumn.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"6 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere 外热带跨对流层顶混合对最下层平流层臭氧和硫酸盐气溶胶之间相关性的影响
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/acp-24-7499-2024
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, Stephan Borrmann
{"title":"The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere","authors":"Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, Stephan Borrmann","doi":"10.5194/acp-24-7499-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7499-2024","url":null,"abstract":"Abstract. The chemical composition of the upper troposphere/lower stratosphere region (UTLS) is influenced by horizontal transport of air masses, vertical transport within convective systems and warm conveyor belts, rapid turbulent mixing, as well as photochemical production or loss of species. This results in the formation of the extratropical transition layer (ExTL), which is defined by the vertical structure of CO and has been studied until now mostly by means of trace gas correlations. Here, we extend the analysis to include aerosol particles and derive the sulfate–ozone correlation in central Europe from aircraft in situ measurements during the CAFE-EU (Chemistry of the Atmosphere Field Experiment over Europe)/BLUESKY mission. The mission probed the UTLS during the COVID-19 period with significantly reduced anthropogenic emissions. We operated a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) to measure the chemical composition of non-refractory aerosol particles in the size range from about 40 to 800 nm. In our study, we find a correlation between the sulfate mass concentration and O3 in the lower stratosphere. The correlation exhibits some variability exceeding the mean sulfate–ozone correlation over the measurement period. Especially during one flight, we observed enhanced mixing ratios of sulfate aerosol in the lowermost stratosphere, where the analysis of trace gases shows tropospheric influence. However, back trajectories indicate that no recent mixing with tropospheric air occurred within the last 10 d. Therefore, we analyzed volcanic eruption databases and satellite SO2 retrievals from the TROPOspheric Monitoring Instrument (TROPOMI) for possible volcanic plumes and eruptions to explain the high amounts of sulfur compounds in the UTLS. From these analyses and the combination of precursor and particle measurements, we conclude that gas-to-particle conversion of volcanic SO2 leads to the observed enhanced sulfate aerosol mixing ratios.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"50 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022 2022 年 1 月 15 日雄加火山爆发平流层气溶胶层扰动的光学特性
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/egusphere-2024-1433
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, Clair Duchamp
{"title":"The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022","authors":"Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, Clair Duchamp","doi":"10.5194/egusphere-2024-1433","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1433","url":null,"abstract":"<strong>Abstract.</strong> The Hunga volcano violently erupted on January 15th, 2022, and produced the largest stratospheric aerosol layer perturbation of the last 30 years. One notable effect of the Hunga eruption was the significant modification of the size distribution (SD) of the stratospheric aerosol layer with respect to background conditions and other recent moderate stratospheric eruptions, with larger mean particles size and smaller SD spread for Hunga. Starting from satellite-based SD retrievals, and the assumption of pure sulphate aerosol layers, in this work we calculate the optical properties of both background and Hunga-perturbed stratospheric aerosol scenarios using a Mie code. We found that the intensive optical properties of the stratospheric aerosol layer (i.e., single scattering albedo, asymmetry parameter, aerosol extinction per unit mass and the broad-band average Ångström exponent) were not significantly perturbed by the Hunga eruption, with respect to background conditions. The calculated Ångström exponent was found consistent with multi-instrument satellite observations of the same parameter. Thus, the basic impact of the Hunga eruption on the optical properties of the stratospheric aerosol layer was an increase of the stratospheric aerosol extinction (or optical depth), without any modification of the shortwave and longwave relative absorption, angular scattering and broad-band spectral trend of the extinction, with respect to background. This highlights a marked difference of the Hunga perturbation of the stratospheric aerosol layer and those from other larger stratospheric eruptions, like Pinatubo 1991 and El Chichon 1982. With simplified radiative forcing estimations, we show that the Hunga eruption produced an aerosol layer likely 3–10 times more effective in producing a net cooling of the climate system with respect to Pinatubo and El Chichon eruptions, due to more effective shortwave scattering. As intensive optical properties are seldom directly measured, e.g. from satellite, our calculations can support the estimation of radiative effects for the Hunga eruption with climate or offline radiative models.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"22 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling the chemistry and transport impacts of the Quasi-Biennial Oscillation on stratospheric ozone 厘清准两年涛动对平流层臭氧的化学和迁移影响
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/egusphere-2024-1927
Jinbo Xie, Qi Tang, Michael Prather, Jadwiga Richter, Shixuan Zhang
{"title":"Disentangling the chemistry and transport impacts of the Quasi-Biennial Oscillation on stratospheric ozone","authors":"Jinbo Xie, Qi Tang, Michael Prather, Jadwiga Richter, Shixuan Zhang","doi":"10.5194/egusphere-2024-1927","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1927","url":null,"abstract":"<strong>Abstract.</strong> The quasi-biennial oscillation (QBO) in tropical winds perturbs stratospheric ozone throughout much of the atmosphere via changes in transport of ozone and other trace gases and via temperature changes that alter chemical processes. Here we separate the temperature-driven changes using the Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2) with linearized stratospheric ozone chemistry. E3SM produces a natural QBO cycle in winds, temperature, and ozone. Our analysis defines climatological QBO patterns of ozone for the period 1979–2020 using both nonlinear principal component analysis and monthly composites centered on QBO phase shift. As a climate model, E3SM cannot predict the timing of the phase shift, but it does match these climatological patterns. We develop an offline version of our stratospheric chemistry module to calculate the steady-state response of ozone to temperature and overhead ozone perturbations, assuming that other chemical families involved in ozone chemistry remain fixed. We find a clear demarcation: ozone perturbations in the upper stratosphere (above 20-hPa) are predicted by the steady-state response of the ozone column to the temperature changes; while those in the lower stratosphere show no temperature response and are presumably driven by circulation changes. These results are important for diagnosing model-model differences in the QBO-ozone responses for climate projections.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"16 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring European anthropogenic NOx emissions from space 从太空监测欧洲人为氮氧化物排放情况
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/acp-24-7523-2024
Ronald J. van der A, Jieying Ding, Henk Eskes
{"title":"Monitoring European anthropogenic NOx emissions from space","authors":"Ronald J. van der A, Jieying Ding, Henk Eskes","doi":"10.5194/acp-24-7523-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7523-2024","url":null,"abstract":"Abstract. Since the launch of TROPOMI on the Sentinel-5 Precursor (S5P) satellite, NO2 observations have become available with a resolution of 3.5× 5 km, which makes monitoring NOx emissions possible at the scale of city districts and industrial facilities. For Europe, emissions are reported on an annual basis for country totals and large industrial facilities and made publicly available via the European Environment Agency (EEA). Satellite observations can provide independent and more timely information on NOx emissions. A new version of the inversion algorithm DECSO (Daily Emissions Constrained by Satellite Observations) has been developed for deriving emissions for Europe on a daily basis, averaged to monthly mean maps. The estimated precision of these monthly emissions is about 25 % for individual grid cells. These satellite-derived emissions from DECSO have been compared to the officially reported European emissions and spatial–temporal disaggregated emission inventories. The country total DECSO NOx emissions are close to the reported emissions and the emissions compiled by the Copernicus Atmosphere Monitoring Service (CAMS). Comparison of the spatially distributed NOx emissions of DECSO and CAMS showed that the satellite-derived emissions are often higher in cities, while they are similar for large power plants and slightly lower in rural areas.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"6 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect 矿物尘埃对全球硝酸盐气溶胶直接和间接辐射效应的影响
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI: 10.5194/egusphere-2024-1579
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, Vlassis A. Karydis
{"title":"Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect","authors":"Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, Vlassis A. Karydis","doi":"10.5194/egusphere-2024-1579","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1579","url":null,"abstract":"<strong>Abstract.</strong> Nitrate (NO<sub>3</sub><sup>-</sup>) aerosol is projected to increase dramatically in the coming decades and may become the dominant inorganic particle species. This is due to the continued strong decrease in SO<sub>2</sub> emissions, which is not accompanied by a corresponding decrease in NO<sub>x</sub> and especially NH<sub>3</sub> emissions. Thus, the radiative effect (RE) of NO<sub>3</sub><sup>-</sup> aerosol may become more important than that of SO<sub>4</sub><sup>2-</sup> aerosol in the future. The physicochemical interactions of mineral dust particles with gas and aerosol tracers play an important role in influencing the overall RE of dust and non-dust aerosols but can be a major source of uncertainty due to their lack of representation in many global climate models. Therefore, this study investigates how and to what extent dust affects the current global NO<sub>3</sub><sup>-</sup> aerosol radiative effect through both radiation (RE<sub>ari</sub>) and cloud interactions (RE<sub>aci</sub>) at the top of the atmosphere (TOA). For this purpose, multi-year simulations nudged towards the observed atmospheric circulation were performed with the global atmospheric chemistry and climate model EMAC, while the thermodynamics of the interactions between inorganic aerosols and mineral dust were simulated with the thermodynamic equilibrium model ISORROPIA-lite. The emission flux of the mineral cations Na<sup>+</sup>, Ca<sup>2+</sup>, K<sup>+</sup> and Mg<sup>2+</sup> is calculated as a fraction of the total aeolian dust emission based on the unique chemical composition of the major deserts worldwide. Our results reveal positive and negative shortwave and longwave radiative effects in different regions of the world via aerosol-radiation interactions and cloud adjustments. Overall, the NO<sub>3</sub><sup>-</sup> aerosol direct effect contributes a global cooling of -0.11 W/m<sup>2</sup>, driven by coarse-mode particle cooling at short wavelengths. Regarding the indirect effect, it is noteworthy that NO<sub>3</sub><sup>-</sup> aerosol exerts a global mean warming of +0.17 W/m<sup>2</sup>. While the presence of NO<sub>3</sub><sup>-</sup> aerosol enhances the ability of mineral dust particles to act as cloud condensation nuclei (CCN), it simultaneously inhibits the formation of cloud droplets from the smaller anthropogenic particles. This is due to the coagulation of fine anthropogenic CCN particles with the larger nitrate-coated mineral dust particles, which leads to a reduction in total aerosol number concentration. This mechanism results in an overall reduced cloud albedo effect and is thus attributed as warming.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"19 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141495820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China 利用 TROPOMI HCHO 观测数据约束非甲烷挥发性有机化合物排放:对 2022 年 8 月中国夏季臭氧模拟的影响
IF 6.3 1区 地球科学
Atmospheric Chemistry and Physics Pub Date : 2024-07-02 DOI: 10.5194/acp-24-7481-2024
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, Weimin Ju
{"title":"Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China","authors":"Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, Weimin Ju","doi":"10.5194/acp-24-7481-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7481-2024","url":null,"abstract":"Abstract. Non-methane volatile organic compounds (NMVOC), serving as crucial precursors of O3, have a significant impact on atmospheric oxidative capacity and O3 formation. However, both anthropogenic and biogenic NMVOC emissions remain subject to considerable uncertainty. Here, we extended the Regional multi-Air Pollutant Assimilation System (RAPAS) using the ensemble Kalman filter (EnKF) algorithm to optimize NMVOC emissions in China in August 2022 by assimilating TROPOspheric Monitoring Instrument (TROPOMI) HCHO retrievals. We also simultaneously optimize NOx emissions by assimilating in situ NO2 observations to address the chemical feedback among VOCs–NOx–O3. Furthermore, a process-based analysis was employed to quantify the impact of NMVOC emission changes on various chemical reactions related to O3 formation and depletion. NMVOC emissions exhibited a substantial reduction of 50.2 %, especially in the middle and lower reaches of the Yangtze River, revealing a prior overestimation of biogenic NMVOC emissions due to an extreme heat wave. Compared to the forecast with prior NMVOC emissions, the forecast with posterior emissions significantly improved HCHO simulations, reducing biases by 75.7 %, indicating a notable decrease in posterior emission uncertainties. The forecast with posterior emissions also effectively corrected the overestimation of O3 in forecasts with prior emissions, reducing biases by 49.3 %. This can be primarily attributed to a significant decrease in the RO2+NO reaction rate and an increase in the NO2+OH reaction rate in the afternoon, thus limiting O3 generation. Sensitivity analyses emphasized the necessity of considering both NMVOC and NOx emissions for a comprehensive assessment of O3 chemistry. This study enhances our understanding of the effects of NMVOC emissions on O3 production and can contribute to the development of effective emission reduction policies.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"24 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信