The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, Clair Duchamp
{"title":"The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022","authors":"Pasquale Sellitto, Redha Belhadji, Bernard Legras, Aurélien Podglajen, Clair Duchamp","doi":"10.5194/egusphere-2024-1433","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Hunga volcano violently erupted on January 15th, 2022, and produced the largest stratospheric aerosol layer perturbation of the last 30 years. One notable effect of the Hunga eruption was the significant modification of the size distribution (SD) of the stratospheric aerosol layer with respect to background conditions and other recent moderate stratospheric eruptions, with larger mean particles size and smaller SD spread for Hunga. Starting from satellite-based SD retrievals, and the assumption of pure sulphate aerosol layers, in this work we calculate the optical properties of both background and Hunga-perturbed stratospheric aerosol scenarios using a Mie code. We found that the intensive optical properties of the stratospheric aerosol layer (i.e., single scattering albedo, asymmetry parameter, aerosol extinction per unit mass and the broad-band average Ångström exponent) were not significantly perturbed by the Hunga eruption, with respect to background conditions. The calculated Ångström exponent was found consistent with multi-instrument satellite observations of the same parameter. Thus, the basic impact of the Hunga eruption on the optical properties of the stratospheric aerosol layer was an increase of the stratospheric aerosol extinction (or optical depth), without any modification of the shortwave and longwave relative absorption, angular scattering and broad-band spectral trend of the extinction, with respect to background. This highlights a marked difference of the Hunga perturbation of the stratospheric aerosol layer and those from other larger stratospheric eruptions, like Pinatubo 1991 and El Chichon 1982. With simplified radiative forcing estimations, we show that the Hunga eruption produced an aerosol layer likely 3–10 times more effective in producing a net cooling of the climate system with respect to Pinatubo and El Chichon eruptions, due to more effective shortwave scattering. As intensive optical properties are seldom directly measured, e.g. from satellite, our calculations can support the estimation of radiative effects for the Hunga eruption with climate or offline radiative models.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"22 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1433","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The Hunga volcano violently erupted on January 15th, 2022, and produced the largest stratospheric aerosol layer perturbation of the last 30 years. One notable effect of the Hunga eruption was the significant modification of the size distribution (SD) of the stratospheric aerosol layer with respect to background conditions and other recent moderate stratospheric eruptions, with larger mean particles size and smaller SD spread for Hunga. Starting from satellite-based SD retrievals, and the assumption of pure sulphate aerosol layers, in this work we calculate the optical properties of both background and Hunga-perturbed stratospheric aerosol scenarios using a Mie code. We found that the intensive optical properties of the stratospheric aerosol layer (i.e., single scattering albedo, asymmetry parameter, aerosol extinction per unit mass and the broad-band average Ångström exponent) were not significantly perturbed by the Hunga eruption, with respect to background conditions. The calculated Ångström exponent was found consistent with multi-instrument satellite observations of the same parameter. Thus, the basic impact of the Hunga eruption on the optical properties of the stratospheric aerosol layer was an increase of the stratospheric aerosol extinction (or optical depth), without any modification of the shortwave and longwave relative absorption, angular scattering and broad-band spectral trend of the extinction, with respect to background. This highlights a marked difference of the Hunga perturbation of the stratospheric aerosol layer and those from other larger stratospheric eruptions, like Pinatubo 1991 and El Chichon 1982. With simplified radiative forcing estimations, we show that the Hunga eruption produced an aerosol layer likely 3–10 times more effective in producing a net cooling of the climate system with respect to Pinatubo and El Chichon eruptions, due to more effective shortwave scattering. As intensive optical properties are seldom directly measured, e.g. from satellite, our calculations can support the estimation of radiative effects for the Hunga eruption with climate or offline radiative models.
2022 年 1 月 15 日雄加火山爆发平流层气溶胶层扰动的光学特性
摘要2022年1月15日,洪加火山猛烈喷发,产生了过去30年中最大的平流层气溶胶层扰动。洪加火山爆发的一个显著影响是平流层气溶胶层的粒度分布(SD)与背景条件和近期其他中等程度的平流层爆发相比发生了显著变化,洪加火山爆发的平均颗粒粒度更大,SD 分布更小。在这项工作中,我们从基于卫星的 SD 检索和纯硫酸盐气溶胶层假设出发,使用 Mie 代码计算了背景和 Hunga 扰动平流层气溶胶情景的光学特性。我们发现,与背景条件相比,平流层气溶胶层的密集光学特性(即单散射反照率、不对称参数、单位质量气溶胶消光和宽带平均Ångström指数)并没有受到Hunga爆发的显著干扰。计算得出的 Ångström 指数与多仪器卫星观测到的同一参数一致。因此,Hunga 火山喷发对平流层气溶胶层光学特性的基本影响是平流层气溶胶消光(或光学深度)的增加,而与背景相比,短波和长波相对吸收、角散射和消光的宽波段光谱趋势没有任何变化。这凸显了洪加对平流层气溶胶层的扰动与其他更大规模的平流层喷发(如 1991 年皮纳图博火山喷发和 1982 年埃尔奇雄火山喷发)所造成的扰动的明显不同。通过简化的辐射强迫估算,我们发现,与皮纳图博火山和埃尔奇雄火山爆发相比,洪加火山爆发产生的气溶胶层由于更有效的短波散射,在造成气候系统净冷却方面的效果可能要高出3-10倍。由于密集光学特性很少被直接测量,例如通过卫星测量,我们的计算可以支持利用气候或离线辐射模型对雄加喷发的辐射效应进行估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信