Paul A Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O Bash, Michael D Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A Lynch, Kester Momoh, Juan L Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W Shephard, Ranjeet S Sokhi, Stefano Galmarini
{"title":"Critical load exceedances for North America and Europe using an ensemble of models and an investigation of causes of environmental impact estimate variability: an AQMEII4 study.","authors":"Paul A Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O Bash, Michael D Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A Lynch, Kester Momoh, Juan L Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W Shephard, Ranjeet S Sokhi, Stefano Galmarini","doi":"10.5194/acp-25-3049-2025","DOIUrl":"10.5194/acp-25-3049-2025","url":null,"abstract":"<p><p>Exceedances of critical loads for deposition of sulfur (S) and nitrogen (N) in different ecosystems were estimated using European and North American ensembles of air quality models, under the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4), to identify where the risk of ecosystem harm is expected to occur based on model deposition estimates. The ensembles were driven by common emissions and lateral boundary condition inputs. Model output was regridded to common North American and European 0.125° resolution domains, which were then used to calculate critical load exceedances. Targeted deposition diagnostics implemented in AQMEII4 allowed for an unprecedented level of post-simulation analysis to be carried out and facilitated the identification of specific causes of model-to-model variability in critical load exceedance estimates. Datasets for North American critical loads for acidity for forest soil water and aquatic ecosystems were created for this analysis. These were combined with the ensemble deposition predictions to show a substantial decrease in the area and number of locations in exceedance between 2010 and 2016 (forest soils: 13.2% to 6.1 %; aquatic ecosystems: 21.2% to 11.4 %). All models agreed regarding the direction of the ensemble exceedance change between 2010 and 2016. The North American ensemble also predicted a decrease in both the severity and total area in exceedance between the years 2010 and 2016 for eutrophication-impacted ecosystems in the USA (sensitive epiphytic lichen: 81.5% to 75.8 %). The exceedances for herbaceous-community richness also decreased between 2010 and 2016, from 13.9% to 3.9 %. The uncertainty associated with the North American eutrophication results is high; there were sharp differences between the models in predictions of both total N deposition and the change in N deposition and hence in the predicted eutrophication exceedances between the 2 years. The European ensemble was used to predict relatively static exceedances of critical loads with respect to acidification (4.48% to 4.32% from 2009 to 2010), while eutrophication exceedance increased slightly (60.2% to 62.2 %). While most models showed the same changes in critical load exceedances as the ensemble between the 2 years, the spatial extent and magnitude of exceedances varied significantly between the models. The reasons for this variation were examined in detail by first ranking the relative contribution of different sources of sulfur and nitrogen deposition in terms of deposited mass and model-to-model variability in that deposited mass, followed by their analysis using AQMEII4 diagnostics, along with evaluation of the most recent literature. All models in both the North American and European ensembles had net annual negative biases with respect to the observed wet deposition of sulfate, nitrate, and ammonium. Diagnostics and recent literature suggest that this bias may stem from insufficient cloud scavenging of aero","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 5","pages":"3049-3107"},"PeriodicalIF":5.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143968167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara L Farrell, Havala O T Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, Kathleen Fahey
{"title":"Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks (Alaska), the Northern Hemisphere, and the Contiguous United States.","authors":"Sara L Farrell, Havala O T Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, Kathleen Fahey","doi":"10.5194/acp-25-3287-2025","DOIUrl":"10.5194/acp-25-3287-2025","url":null,"abstract":"<p><p>A portion of Alaska's Fairbanks North Star Borough was designated as nonattainment for the 2006 24 h fine particulate matter 2.5 μm or less in diameter (PM<sub>2.5</sub>) National Ambient Air Quality Standards (NAAQS) in 2009. PM<sub>2.5</sub> NAAQS exceedances in Fairbanks mainly occur during dark and cold winters, when temperature inversions form and trap high emissions at the surface. Sulfate ( <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> ), often the second-largest contributor to PM<sub>2.5</sub> mass during these wintertime PM episodes, is underpredicted by atmospheric chemical transport models (CTMs). Most CTMs account for primary <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> and secondary <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> formed via gas-phase oxidation of sulfur dioxide ( <math> <mrow><msub><mtext>SO</mtext> <mn>2</mn></msub> </mrow> </math> ) and in-cloud aqueous oxidation of dissolved S(IV). Dissolution and reaction of <math> <mrow><msub><mtext>SO</mtext> <mn>2</mn></msub> </mrow> </math> in aqueous aerosols are generally not included in CTMs but can be represented as heterogeneous reactive uptake and may help better represent the high <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> concentrations observed during Fairbanks winters. In addition, hydroxymethanesulfonate (HMS), a particulate sulfur species sometimes misidentified as <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> , is known to form during Fairbanks winters. Heterogeneous formation of <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> and HMS in aerosol liquid water (ALW) was implemented in the Community Multiscale Air Quality (CMAQ) modeling system. CMAQ simulations were performed for wintertime PM episodes in Fairbanks (2008) as well as over the Northern Hemisphere and Contiguous United States (CONUS) for 2015-2016. The added heterogeneous sulfur chemistry reduced model mean sulfate bias by ~0.6 μg m<sup>-3</sup> during a cold winter PM episode in Fairbanks, AK. Improvements in model performance are also seen in Beijing during wintertime haze events (reducing model mean sulfate bias by ~2.9 μgS m<sup>-3</sup>). This additional sulfur chemistry also improves modeled summertime <math> <mrow><msubsup><mtext>SO</mtext> <mn>4</mn> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </mrow> </math> bias in the southeastern US, with implications for future modeling of biogenic organosulfates.</p>","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 5","pages":"3287-3312"},"PeriodicalIF":5.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J Rudzinski, Michael Lewandowski, Tadeusz E Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, Rafal Szmigielski
{"title":"Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds.","authors":"Mohammed Jaoui, Klara Nestorowicz, Krzysztof J Rudzinski, Michael Lewandowski, Tadeusz E Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, Rafal Szmigielski","doi":"10.5194/acp-25-1401-2025","DOIUrl":"10.5194/acp-25-1401-2025","url":null,"abstract":"<p><p>This study investigated the effect of relative humidity (RH) on the chemical composition of gas and particle phases formed from the photooxidation of 1,3-butadiene (13BD) in the presence of NO <sub><i>x</i></sub> under acidified and non-acidified seed aerosol. The experiments were conducted in a 14.5 m<sup>3</sup> smog chamber operated in a steady-state mode. Products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, and ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry. More than 50 oxygenated products were identified, including 33 oxygenated organics, 10 organosulfates (OSs), PAN, APAN, glyoxal, formaldehyde, and acrolein. Secondary organic aerosol (SOA) mass and reaction products formed depended on RH and on the acidity of the seed aerosol. Based on the Extended Aerosol Inorganics Model (E-AIM), the seed aerosol originated from the acidified and non-acidified solutions was found to exist under aqueous and solid phases, respectively. Although the terms \"acidified\" and \"non-acidified\" are true for the solutions from which the seeds were atomized, there are far more fundamental differences between the phase states in which species partition to or from (aqueous/solid), which considerably affects their partitioning and formation mechanisms. SOA mass and most SOA products (i) were higher under acidified seed conditions, where the aerosol particles were deliquescent, than under non-acidified seed conditions, where the aerosol particles did not contain any aqueous phase; (ii) increased with the acidity of the aerosol aqueous phase in the experiments under acidified seed conditions; and (iii) decreased with increasing RH. Glyceric acid, threitols, threonic acids, four dimers, three unknowns, and four organosulfates were among the main species measured under either acidified or non-acidified conditions across all RH levels. Total secondary organic carbon and carbon yield decreased with increasing RH under both acidified and non-acidified seed conditions. The photochemical reactivity of 13BD in our systems decreased with increasing RH and was faster under non-acidified than acidified seed conditions. To determine the contribution of 13BD products to ambient aerosol, we analyzed PM<sub>2.5</sub> samples collected at three European monitoring stations located in Poland. The occurrence of several 13BD SOA products (e.g., glyceric acid, tartronic acid, threonic acid, tartaric acid, and OSs) in the field samples suggests that 13BD could contribute to ambient aerosol formation.</p>","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 2","pages":"1401-1432"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalie Brett, Kathy S Law, Steve R Arnold, Javier G Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F DeCarlo, Vanessa Selimovic, Robert Yokelson, Ellis S Robinson
{"title":"Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska, during ALPACA-2022.","authors":"Natalie Brett, Kathy S Law, Steve R Arnold, Javier G Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F DeCarlo, Vanessa Selimovic, Robert Yokelson, Ellis S Robinson","doi":"10.5194/acp-25-1063-2025","DOIUrl":"10.5194/acp-25-1063-2025","url":null,"abstract":"<p><p>Lagrangian tracer simulations are deployed to investigate processes influencing vertical and horizontal dispersion of anthropogenic pollution in Fairbanks, Alaska, during the Alaskan Layered Pollution and Chemical Analysis (ALPACA) 2022 field campaign. Simulated concentrations of carbon monoxide (CO), sulfur dioxide ( <math><mrow><mtext>S</mtext> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </math> ), and nitrogen oxides ( <math><mrow><mtext>N</mtext> <msub><mtext>O</mtext> <mi>x</mi></msub> </mrow> </math> ), including surface and elevated sources, are the highest at the surface under very cold stable conditions. Pollution enhancements above the surface (50-300 m) are mainly attributed to elevated power plant emissions. Both surface and elevated sources contribute to Fairbanks' regional pollution that is transported downwind, primarily to the south-west, and may contribute to wintertime Arctic haze. Inclusion of a novel power plant plume rise treatment that considers the presence of surface and elevated temperature inversion layers leads to improved agreement with observed CO and <math><mrow><mtext>N</mtext> <msub><mtext>O</mtext> <mi>x</mi></msub> </mrow> </math> plumes, with discrepancies attributed to, for example, displacement of plumes by modelled winds. At the surface, model results show that observed CO variability is largely driven by meteorology and, to a lesser extent, by emissions, although simulated tracers are sensitive to modelled vertical dispersion. Modelled underestimation of surface <math><mrow><mtext>N</mtext> <msub><mtext>O</mtext> <mi>x</mi></msub> </mrow> </math> during very cold polluted conditions is considerably improved following the inclusion of substantial increases in diesel vehicle <math><mrow><mtext>N</mtext> <msub><mtext>O</mtext> <mi>x</mi></msub> </mrow> </math> emissions at cold temperatures (e.g. a factor of 6 at -30°C). In contrast, overestimation of surface <math><mrow><mtext>S</mtext> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </math> is attributed mainly to model deficiencies in vertical dispersion of elevated (5-18 m) space heating emissions. This study highlights the need for improvements to local wintertime Arctic anthropogenic surface and elevated emissions and improved simulation of Arctic stable boundary layers.</p>","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"25 2","pages":"1063-1104"},"PeriodicalIF":5.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T Nash Skipper, Emma L D'Ambro, Forwood C Wiser, V Faye McNeill, Rebecca H Schwantes, Barron H Henderson, Ivan R Piletic, Colleen B Baublitz, Jesse O Bash, Andrew R Whitehill, Lukas C Valin, Asher P Mouat, Jennifer Kaiser, Glenn M Wolfe, Jason M St Clair, Thomas F Hanisco, Alan Fried, Bryan K Place, Havala O T Pye
{"title":"Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM).","authors":"T Nash Skipper, Emma L D'Ambro, Forwood C Wiser, V Faye McNeill, Rebecca H Schwantes, Barron H Henderson, Ivan R Piletic, Colleen B Baublitz, Jesse O Bash, Andrew R Whitehill, Lukas C Valin, Asher P Mouat, Jennifer Kaiser, Glenn M Wolfe, Jason M St Clair, Thomas F Hanisco, Alan Fried, Bryan K Place, Havala O T Pye","doi":"10.5194/acp-24-12903-2024","DOIUrl":"10.5194/acp-24-12903-2024","url":null,"abstract":"<p><p>Formaldehyde (HCHO) is an important air pollutant with direct cancer risk and ozone-forming potential. HCHO sources are complex because HCHO is both directly emitted and produced from oxidation of most gas-phase reactive organic carbon. We update the secondary production of HCHO in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) in the Community Multiscale Air Quality (CMAQ) model. Production of HCHO from isoprene and monoterpenes is increased, correcting an underestimate in the current version. Simulated June-August surface HCHO during peak photochemical production (11:00-15:00 LT, local time) increased by 0.6 ppb (32 %) over the southeastern USA and by 0.2 ppb (13 %) over the contiguous USA. The increased HCHO compares more favorably with satellite-based observations from the TROPOspheric Monitoring Instrument (TROPOMI) and from aircraft-based observations. Evaluation against hourly surface observations indicates a missing nighttime sink that can be improved by increased nighttime deposition, which reduces June-August nocturnal (20:00-04:00 LT) surface HCHO by 1.1 ppb (36 %) over the southeastern USA and 0.5 ppb (29 %) over the contiguous USA. The ability of CRACMM to capture peak levels of HCHO at midday is improved, particularly at sites in the northeastern USA, while peak levels at sites in the southeastern USA are improved, although still lower than observed. Using established risk assessment methods, lifetime exposure of the population in the contiguous USA (~320 million) to ambient HCHO levels predicted here may result in 6200 lifetime cancer cases, with 40 % from controllable anthropogenic emissions of nitrogen oxides and reactive organic compounds. Chemistry updates will be available in CRACMM version 2 (CRACMM2) in CMAQv5.5.</p>","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"24 22","pages":"12903-12924"},"PeriodicalIF":5.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, Trude Storelvmo
{"title":"Using a region-specific ice-nucleating particle parameterization improves the representation of Arctic clouds in a global climate model","authors":"Astrid Bragstad Gjelsvik, Robert Oscar David, Tim Carlsen, Franziska Hellmuth, Stefan Hofer, Zachary McGraw, Harald Sodemann, Trude Storelvmo","doi":"10.5194/egusphere-2024-1879","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1879","url":null,"abstract":"<strong>Abstract.</strong> Projections of global climate change and Arctic amplification are sensitive to the representation of low-level cloud phase in climate models. Ice-nucleating particles (INPs) are necessary for primary cloud ice formation at temperatures above approximately -38 °C, and thus significantly affect cloud phase and cloud radiative effect. Due to their complex and insufficiently understood variability, INPs constitute an important modelling challenge, especially in remote regions with few observations, such as the Arctic. In this study, INP observations were carried out at Andenes, Norway in March 2021. These observations were used as a basis for an Arctic-specific and purely temperature-dependent INP parameterization, and implemented into the Norwegian Earth System Model. This implementation results in an annual average increase in cloud liquid water path (CLWP) of 70 % for the Arctic, and improves the representation of cloud phase compared to satellite observations. The change in CLWP in boreal autumn and winter is found to likely be the dominant contributor to the annual average increase in net surface cloud radiative effect of 2 W m<sup>-2</sup>. This large surface flux increase brings the simulation into better agreement with Arctic ground-based measurements. Despite that the model cannot respond fully to the INP parameterization change due to fixed sea surface temperatures, Arctic surface air temperature increases with 0.7 °C in boreal autumn. These findings indicate that INPs could have a significant impact on Arctic climate, and that a region-specific INP parameterization can be a useful tool to improve cloud representation in the Arctic region.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"7 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches","authors":"Xiaohong Yao, Leiming Zhang","doi":"10.5194/acp-24-7773-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7773-2024","url":null,"abstract":"Abstract. This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and Ox (meaning NO2+O3) measured in 10 Canadian cities during the last 2 to 3 decades. We also investigated associated driving forces in terms of emission reductions, perturbations due to varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks. Two machine learning methods, the random forest algorithm and boosted regression trees, were used to extract deweathered mixing ratios (or mass concentrations) of the pollutants. The Mann–Kendall trend test of the deweathered and original annual average concentrations of the pollutants showed that, on the timescale of 20 years or longer, perturbation due to varying weather conditions on the decadal trends of the pollutants are minimal (within ±2 %) in about 70 % of the studied cases, although it might be larger (but at most 16 %) in the remaining cases. NO2, CO and SO2 showed decreasing trends in the last 2 to 3 decades in all the cities except CO in Montréal. O3 showed increasing trends in all the cities except Halifax, mainly due to weakened titration reaction between O3 and NO. Ox, however, showed decreasing trends in all the cities except Victoria, because the increase in O3 is much less than the decrease in NO2. In three of the five eastern Canadian cities, emission reductions dominated the decreasing trends in PM2.5, but no significant trends in PM2.5 were observed in the other two cites. In the five western Canadian cities, increasing or no significant trends in PM2.5 were observed, likely due to unpredictable large-scale wildfires overwhelming or balancing the impacts of emission reductions on PM2.5. In addition, despite improving air quality during the last 2 decades in most cities, an air quality health index of above 10 (representing a very high risk condition) still occasionally occurred after 2010 in western Canadian cities because of the increased large-scale wildfires.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"16 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, David Simpson
{"title":"Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe","authors":"Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, David Simpson","doi":"10.5194/acp-24-7699-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7699-2024","url":null,"abstract":"Abstract. Atmospheric volatile organic compounds (VOCs) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP MSC-W) CTM to evaluate emission inventories in Europe. Here we undertake the first intensive model–measurement comparison of VOCs in 2 decades. The modelled surface concentrations are evaluated both spatially and temporally, using measurements from the regular EMEP monitoring network in 2018 and 2019, as well as a 2022 campaign. To achieve this, we utilised the UK National Atmospheric Emissions Inventory to derive explicit emission profiles for individual species and employed a tracer method to produce pure concentrations that are directly comparable to observations. The degree to which the modelled and measured VOCs agree varies depending on the specific species. The model successfully captures the overall spatial and temporal variations of major alkanes (e.g. ethane, n-butane) and unsaturated species (e.g. ethene, benzene) but less so for propane, i-butane, and ethyne. This discrepancy underscores potential issues in the boundary conditions for the latter species and in their primary emissions from, in particular, the solvent and road transport sectors. Specifically, potential missing propane emissions and issues with its boundary conditions are highlighted by large model underestimations and smaller propane-to-ethane ratios compared to the measurement. Meanwhile, both the model and measurements show strong linear correlations among butane isomers and among pentane isomers, indicating common sources for these pairs of isomers. However, modelled ratios of i-butane to n-butane and i-pentane to n-pentane are approximately one-third of the measured ratios, which is largely driven by significant emissions of n-butane and n-pentane from the solvent sector. This suggests issues with the speciation profile of the solvent sector, underrepresented contributions from transport and fuel evaporation sectors in current inventories, or both. Furthermore, the modelled ethene-to-ethyne and benzene-to-ethyne ratios differ significantly from measured ratios. The different model performance strongly points to shortcomings in the spatial and temporal patterns and magnitudes of ethyne emissions, especially during winter. For OVOCs, the modelled and measured concentrations of methanal and methylglyoxal show a good agreement, despite a moderate underestimation by the model in summer. This discrepancy could be attributed to an underestimation of contributions from biogenic sources or possibly a model overestimation of their photolytic loss in summer. However, the insufficiency of suitabl","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"1 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, Bjørn H. Samset
{"title":"Weak surface temperature effects of recent reductions in shipping SO2 emissions, with quantification confounded by internal variability","authors":"Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel Westervelt, Andrew Williams, Bjørn H. Samset","doi":"10.5194/egusphere-2024-1946","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1946","url":null,"abstract":"<strong>Abstract.</strong> In 2020 the International Maritime Organization (IMO) implemented strict new regulations on the emissions of sulphate aerosol from the world's shipping fleet. This can be expected to lead to a reduction in aerosol-driven cooling, unmasking a portion of greenhouse gas warming. The magnitude of the effect is uncertain, however, due to the large remaining uncertainties in the climate response to aerosols. Here, we investigate this question using an 18-member ensemble of fully coupled climate simulations evenly sampling key modes of climate variability with the NCAR CESM2 model. We show that while there is a clear physical response of the climate system to the IMO regulations, including a surface temperature increase, we do not find global mean temperature influence that is significantly different from zero. The 20-year average global mean warming for 2020–2040 is +0.03 °C, with a 5–95 % confidence range of [-0.09, 0.19], reflecting the weakness of the perturbation relative to internal variability. We do, however, find a robust, non-zero regional temperature response in part of the North Atlantic. We also find that the maximum annual-mean ensemble-mean warming occurs around a decade after the perturbation in 2029, which means that the IMO regulations have likely had very limited influence on observed global warming to date. We further discuss our results in light of other, recent publications that have reached different conclusions. Overall, while the IMO regulations may contribute up to at 0.16 °C [-0.17, 0.52] to the global mean surface temperature in individual years during this decade, consistent with some early studies, such a response is unlikely to have been discernible above internal variability by the end of 2023 and is in fact consistent with zero throughout the 2020–2040 period.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"6 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum","authors":"Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, Gan Zhang","doi":"10.5194/acp-24-7755-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7755-2024","url":null,"abstract":"Abstract. Water-insoluble organic carbon (WIOC) constitutes a substantial portion of organic carbon (OC) and contributes significantly to light absorption by brown carbon (BrC), playing pivotal roles in climate forcing. China is a hotspot region with high levels of OC and BrC, but information regarding the sources and light-absorbing properties of WIOC on a national scale remains scarce. Here, we investigated the light-absorbing properties and sources of WIOC in 10 representative urban cities in China. On average, WIOC made up 33.4 ± 7.66 % and 40.5 ± 9.73 % of concentrations and light absorption at 365 nm (Abs365) of extractable OC (EX-OC), which includes relatively hydrophobic OC (WIOC and humic-like substances, HULIS-C) and hydrophilic OC (non-humic-like substances, non-HULIS-C). The mass absorption efficiency of WIOC at 365 nm (MAE365) was (1.59 ± 0.55 m2 (g C)−1) comparable to that of HULIS (1.54 ± 0.57 m2 (g C)−1) but significantly higher than non-HULIS (0.71 ± 0.28 m2 (g C)−1), indicating that hydrophobic OC possesses a stronger light-absorbing capacity than hydrophilic OC. Biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of WIOC, with coal combustion sources exhibiting the strongest light-absorbing capacity. Moreover, employing the simple forcing efficiency (SFE300–700 nm) method, we observed that WIOC exhibited the highest SFE300–700 nm (6.57 ± 5.37 W g−1) among the EX-OC fractions. The radiative forcing of EX-OC was predominantly contributed by hydrophobic OC (WIOC – 39.4 ± 15.5 % and HULIS – 39.5 ± 12.1 %). Considering the aromaticity, sources, and atmospheric processes of different carbonaceous components, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to possess stronger light-absorbing capacity, higher aromatic levels, increased molecular weights, and greater recalcitrance in the atmosphere. Reducing fossil fuel emissions emerges as an effective means of mitigating both gaseous (CO2) and particulate light-absorbing carbonaceous warming components.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"2015 1","pages":""},"PeriodicalIF":6.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}