arXiv: Strongly Correlated Electrons最新文献

筛选
英文 中文
Flux crystals, Majorana metals, and flat bands in exactly solvable spin-orbital liquids 通量晶体,马约拉纳金属,以及精确可溶自旋轨道液体中的平带
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-27 DOI: 10.1103/PHYSREVB.103.075144
Sreejith Chulliparambil, L. Janssen, M. Vojta, Hong-Hao Tu, Urban F. P. Seifert
{"title":"Flux crystals, Majorana metals, and flat bands in exactly solvable spin-orbital liquids","authors":"Sreejith Chulliparambil, L. Janssen, M. Vojta, Hong-Hao Tu, Urban F. P. Seifert","doi":"10.1103/PHYSREVB.103.075144","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.075144","url":null,"abstract":"Spin-orbital liquids are quantum disordered states in systems with entangled spin and orbital degrees of freedom. We study exactly solvable spin-orbital models in two dimensions with selected Heisenberg-, Kitaev-, and $Gamma$-type interactions, as well as external magnetic fields. These models realize a variety of spin-orbital-liquid phases featuring dispersing Majorana fermions with Fermi surfaces, nodal Dirac or quadratic band touching points, or full gaps. In particular, we show that Zeeman magnetic fields can stabilize nontrivial flux patterns and induce metamagnetic transitions between states with different topological character. Solvable nearest-neighbor biquadratic spin-orbital perturbations can be tuned to stabilize zero-energy flat bands. We discuss in detail the examples of $mathrm{SO}(2)$- and $mathrm{SO}(3)$-symmetric spin-orbital models on the square and honeycomb lattices, and use group-theoretical arguments to generalize to $mathrm{SO}(nu)$-symmetric models with arbitrary integer $nu > 1$. These results extend the list of exactly solvable models with spin-orbital-liquid ground states and highlight the intriguing general features of such exotic phases. Our models are thus excellent starting points for more realistic modellings of candidate materials.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73784279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Investigation of the effective interactions for the Emery model by the constrained random-phase approximation and constrained functional renormalization group 用约束随机相位近似和约束泛函重整化群研究Emery模型的有效相互作用
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-27 DOI: 10.1103/PHYSREVB.103.125130
Xing-Jie Han, P. Werner, C. Honerkamp
{"title":"Investigation of the effective interactions for the Emery model by the constrained random-phase approximation and constrained functional renormalization group","authors":"Xing-Jie Han, P. Werner, C. Honerkamp","doi":"10.1103/PHYSREVB.103.125130","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.125130","url":null,"abstract":"The effective interaction of downfolded low-energy models for electrons in solids can be obtained by integrating out the high energy bands away from the target band near the Fermi level. Here, we apply the constrained random-phase approximation (cRPA) and constrained functional renormalization group (cfRG), which can go beyond cRPA by including all one-loop diagrams, to calculate and compare the effective interactions of the three-band Emery model, which is often used to investigate cuprate high-temperature superconductors. At half band filling, we find that the effective interaction increases as the charge transfer energy ($Delta_{dp}$) increases and similar behavior is obtained as a function of the interatomic 2$p$-3$d$ interaction ($U_{dp}$). However, the effective interaction is more sensitive to $Delta_{dp}$ than $ U_{dp}$. For most of the parameter sets, the effective static interaction is overscreened in cRPA compared to cfRG. The low-energy models at half-filling are solved within dynamical mean-field theory (DMFT). The results show that despite the different static interactions, the systems with cRPA and cfRG interaction exhibit a Mott transition at similar values of $Delta_{dp}$. We also investigate the effective interaction as a function of doping. The cfRG effective interaction decreases as the electron number increases and displays a trend opposite to that of cRPA. Antiscreening is observed for the hole-doped case. For all the cases studied, the near-cancellation of the direct particle-hole channel is observed. This indicates that at least for the downfolding of the onsite interaction terms, methods beyond cRPA may be required.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86349347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Pressure-induced phase transition in the J1−J2 square lattice antiferromagnet RbMoOPO4Cl J1−J2方晶格反铁磁体RbMoOPO4Cl的压力诱导相变
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-26 DOI: 10.1103/PHYSREVB.103.104406
H. Takeda, T. Yamauchi, M. Takigawa, H. Ishikawa, Z. Hiroi
{"title":"Pressure-induced phase transition in the \u0000J1−J2\u0000 square lattice antiferromagnet \u0000RbMoOPO4Cl","authors":"H. Takeda, T. Yamauchi, M. Takigawa, H. Ishikawa, Z. Hiroi","doi":"10.1103/PHYSREVB.103.104406","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104406","url":null,"abstract":"We report results of magnetization and $^{31}$P NMR measurements under high pressure up to 6.4~GPa on RbMoOPO$_4$Cl, which is a frustrated square-lattice antiferromagnet with competing nearest-neighbor and next-nearest-neighbor interactions. Anomalies in the pressure dependences of the NMR shift and the transferred hyperfine coupling constants indicate a structural phase transition at 2.6~GPa, which is likely to break mirror symmetry and triggers significant change of the exchange interactions. In fact, the NMR spectra in magnetically ordered states reveal a change from the columnar antiferromagnetic (CAF) order below 3.3~GPa to the Neel antiferromagnetic (NAF) order above 3.9~GPa. The spin lattice relaxation rate $1/T_1$ also indicates a change of dominant magnetic fluctuations from CAF-type to NAF-type with pressure. Although the NMR spectra in the intermediate pressure region between 3.3 and 3.9 GPa show coexistence of the CAF and NAF phases, a certain component of $1/T_1$ shows paramagnetic behavior with persistent spin fluctuations, leaving possibility for a quantum disordered phase. The easy-plane anisotropy of spin fluctuations with unusual nonmonotonic temperature dependence at ambient pressure gets reversed to the Ising anisotropy at high pressures. This unexpected anisotropic behavior for a spin 1/2 system may be ascribed to the strong spin-orbit coupling of Mo-4$d$ electrons.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73448197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cluster glass transition and relaxation in the random spinel CoGa2O4 随机尖晶石CoGa2O4中的团簇玻璃化转变和弛豫
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-26 DOI: 10.1103/PhysRevB.103.224408
T. Naka, T. Nakane, S. Ishii, M. Nakayama, A. Ohmura, F. Ishikawa, A. de Visser, H. Abe, T. Uchikoshi
{"title":"Cluster glass transition and relaxation in the random spinel \u0000CoGa2O4","authors":"T. Naka, T. Nakane, S. Ishii, M. Nakayama, A. Ohmura, F. Ishikawa, A. de Visser, H. Abe, T. Uchikoshi","doi":"10.1103/PhysRevB.103.224408","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.224408","url":null,"abstract":"We report magnetic properties in the random spinel magnet CoGa2O4. Rietveld analysis of the x-ray diffraction profile for CoGa2O4 reveals that the Co and Ga ions are distributed randomly in the tetrahedral A-sites and octahedral B-sites in the cubic spinel structure. CoGa2O4 exhibits a spin-glass transition at TSG = 8.2 K that is confirmed by measurements of the dc- and ac-susceptibilities and thermoremanent magnetization (TRM) that develops below TSG. From the frequency dependence of the freezing temperature Tf for CoGa2O4, it is indicated that the relaxation time follows a Vogel-Fulcher law. Magnetic entropy is considerably reduced, probably because magnetic cluster formation developed even at T > TSG. The relaxation rate of TRM is considerably enhanced at TSG and decays rapidly above and below TSG. The time course of TRM is reproduced by non-exponential relaxation forms, such as a stretched exponential (Kohlrausch) as well as Ogielski and Weron relaxation forms. This behavior is displayed universally in glass systems, and the characteristic parameters associated with these functions were reasonable.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82174804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Trimeron-phonon coupling in magnetite 磁铁矿中的三介子-声子耦合
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-22 DOI: 10.1103/PHYSREVB.103.104303
P. Piekarz, D. Legut, E. Baldini, Carina A. Belvin, T. Kolodziej, W. Tabiś, A. Kozłowski, Z. Kąkol, Z. Tarnawski, J. Lorenzana, N. Gedik, A. Oleś, J. Honig, K. Parlinski
{"title":"Trimeron-phonon coupling in magnetite","authors":"P. Piekarz, D. Legut, E. Baldini, Carina A. Belvin, T. Kolodziej, W. Tabiś, A. Kozłowski, Z. Kąkol, Z. Tarnawski, J. Lorenzana, N. Gedik, A. Oleś, J. Honig, K. Parlinski","doi":"10.1103/PHYSREVB.103.104303","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104303","url":null,"abstract":"Using density functional theory, we study the lattice dynamical properties of magnetite (Fe$_3$O$_4$) in the high-temperature cubic and low-temperature monoclinic phases. The calculated phonon dispersion curves and phonon density of states are compared with the available experimental data obtained by inelastic neutron, inelastic x-ray, and nuclear inelastic scattering. We find a very good agreement between the theoretical and experimental results for the monoclinic $Cc$ structure revealing the strong coupling between charge-orbital (trimeron) order and specific phonon modes. For the cubic phase, clear discrepancies arise which, remarkably, can be understood assuming that the strong trimeron-phonon coupling can be extended above the Verwey transition, with lattice dynamics influenced by the short-range trimeron order instead of the average cubic structure. Our results establish the validity of trimerons (and trimeron-phonon coupling) in explaining the physics of magnetite much beyond their original formulation.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74681923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Magnetoelectric generation of a Majorana-Fermi surface in Kitaev's honeycomb model 基塔耶夫蜂巢模型中马约拉纳-费米曲面的磁电产生
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-21 DOI: 10.1103/PhysRevB.103.134444
R. Chari, R. Moessner, J. Rau
{"title":"Magnetoelectric generation of a Majorana-Fermi surface in Kitaev's honeycomb model","authors":"R. Chari, R. Moessner, J. Rau","doi":"10.1103/PhysRevB.103.134444","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.134444","url":null,"abstract":"We study the effects of static magnetic and electric fields on Kitaev's honeycomb model. Using the electric polarization operator appropriate for Kitaev materials, we derive the effective Hamiltonian for the emergent Majorana fermions to second-order in both the electric and magnetic fields. We find that while individually each perturbation does not qualitatively alter Kitaev spin liquid, the cross-term induces a finite chemical potential at each Dirac node, giving rise to a Majorana-Fermi surface. We argue this gapless phase is stable and exhibits typical metallic phenomenology, such as linear in temperature heat capacity and finite, but non-quantized, thermal Hall response. Finally, we speculate on the potential for realization of this physics in Kitaev materials.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90489638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Strong tuning of magnetism and electronic structure by spin orientation 通过自旋取向对磁性和电子结构进行强调谐
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-21 DOI: 10.1103/PhysRevB.102.180401
Y. Weng, Xing’ao Li, S. Dong
{"title":"Strong tuning of magnetism and electronic structure by spin orientation","authors":"Y. Weng, Xing’ao Li, S. Dong","doi":"10.1103/PhysRevB.102.180401","DOIUrl":"https://doi.org/10.1103/PhysRevB.102.180401","url":null,"abstract":"To efficiently manipulate magnetism is a key physical issue for modern condensed matter physics, which is also crucial for magnetic functional applications. Most previous relevant studies rely on the tuning of spin texture, while the spin orientation is often negligible. As an exception, spin-orbit coupled $J_{rm eff}$ states of $4d$/$5d$ electrons provide an ideal platform for emergent quantum effects. However, many expectations have not been realized due to the complexities of real materials. Thus the pursuit for more ideal $J_{rm eff}$ states remains ongoing. Here a near-ideal $J_{rm eff}$=$3/2$ Mott insulating phase is predicted in the family of hexachloro niobates, which avoid some common drawbacks of perovskite oxides. The local magnetic moment is nearly compensated between spin and orbital components, rendering exotic recessive magnetism. More interestingly, the electronic structure and magnetism can be strongly tuned by rotating spin axis, which is rare but crucial for spintronic applications.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86530194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs 自旋反转带对的几何霍尔效应和动量空间Berry曲率
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-19 DOI: 10.1103/PHYSREVB.103.L041111
M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T. Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K. Kindo, R. Arita, M. Tokunaga, Y. Tokura
{"title":"Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs","authors":"M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T. Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K. Kindo, R. Arita, M. Tokunaga, Y. Tokura","doi":"10.1103/PHYSREVB.103.L041111","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.L041111","url":null,"abstract":"When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"16 12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83381638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Quantum oscillations in the activated conductivity in excitonic insulators: Possible application to monolayer WTe2 激子绝缘体中活化电导率的量子振荡:可能应用于单层WTe2
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-19 DOI: 10.1103/physrevb.103.l041101
P. Lee
{"title":"Quantum oscillations in the activated conductivity in excitonic insulators: Possible application to monolayer \u0000WTe2","authors":"P. Lee","doi":"10.1103/physrevb.103.l041101","DOIUrl":"https://doi.org/10.1103/physrevb.103.l041101","url":null,"abstract":"A recent paper on the insulating state of monolayer WTe2 reported the observation of large oscillations in the conductivity that are periodic in 1/B, resembling quantum oscillations in metals. This remarkable observation has inspired suggestions of exotic physics such as spin-charge separation. We show that a rather more conventional but still nontrivial explanation in terms of gap modulation may be possible in a model of excitonic insulator subject to a magnetic field.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78048896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Diagrammatic study of optical excitations in correlated systems 相关系统中光激发的图解研究
arXiv: Strongly Correlated Electrons Pub Date : 2020-10-18 DOI: 10.1103/PHYSREVB.103.104415
O. Simard, S. Takayoshi, P. Werner
{"title":"Diagrammatic study of optical excitations in correlated systems","authors":"O. Simard, S. Takayoshi, P. Werner","doi":"10.1103/PHYSREVB.103.104415","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.104415","url":null,"abstract":"The optical conductivity contains relevant information on the properties of correlated electron systems. In infinite dimensions, where dynamical mean field theory becomes exact, vertex corrections can be neglected and the conductivity computed from particle-hole bubbles. An interesting question concerns the nature and effect of the most relevant vertex corrections in finite-dimensional systems. A recent numerical study showed that the dominant vertex correction near an ordering instability with wave vector {pi} comes from a vertical ladder, analogous to the Maki-Thompson diagram. Since the RPA version of this ladder diagram, dubbed {pi}-ton, can be easily evaluated, this suggests a simple procedure for incorporating antiferromagnetic or charge density wave fluctuations into dynamical mean field estimates of the optical conductivity and related susceptibilities. We implement this procedure for the half-filled Hubbard model, considering the {pi}-ton and a double-ladder extension of the {pi}-ton, and reveal the spectral signatures of these vertex corrections.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76745828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信