自旋反转带对的几何霍尔效应和动量空间Berry曲率

M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T. Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K. Kindo, R. Arita, M. Tokunaga, Y. Tokura
{"title":"自旋反转带对的几何霍尔效应和动量空间Berry曲率","authors":"M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T. Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K. Kindo, R. Arita, M. Tokunaga, Y. Tokura","doi":"10.1103/PHYSREVB.103.L041111","DOIUrl":null,"url":null,"abstract":"When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"16 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs\",\"authors\":\"M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T. Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K. Kindo, R. Arita, M. Tokunaga, Y. Tokura\",\"doi\":\"10.1103/PHYSREVB.103.L041111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"16 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.L041111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.L041111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

当具有标量自旋手性(SSC)的纳米非共面自旋织构与流动电子耦合时,它们以一种类似于相对论自旋轨道耦合(SOC)的方式赋予准粒子波函数一个称为Berry曲率的规范场。由此产生的移动载流子的偏转被称为几何(或拓扑)霍尔效应。先前的实验研究将该信号建模为受量子力学相位影响的波包的实空间运动。相比之下,我们在这里比较了由于SOC和SSC对Bloch波本身及其能量色散的改变。以斜向焦绿铁磁体Nd$_2$Mo$_2$O$_7$为模型化合物,我们的输运实验和第一性原理计算表明,SOC能公正地混合自旋相等或相反的电子带对,而SSC对自旋相反的电子带对更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrical Hall effect and momentum-space Berry curvature from spin-reversed band pairs
When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wavefunctions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wavepackets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves, and of their energy dispersion, due to SOC and SSC. Using the canted pyrochlore ferromagnet Nd$_2$Mo$_2$O$_7$ as a model compound, our transport experiments and first-principle calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite spin band pairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信