J. Marquès, P. Loiseau, J. Bonvalet, M. Tarisien, E. D'humieres, J. Domange, F. Hannachi, L. Lancia, O. Larroche, P. Nicolaï, P. Puyuelo-Valdes, L. Romagnani, J. Santos, V. Tikhonchuk
{"title":"Over-critical sharp-gradient plasma slab produced by the collision of laser-induced blast-waves in a gas jet: Application to high-energy proton acceleration","authors":"J. Marquès, P. Loiseau, J. Bonvalet, M. Tarisien, E. D'humieres, J. Domange, F. Hannachi, L. Lancia, O. Larroche, P. Nicolaï, P. Puyuelo-Valdes, L. Romagnani, J. Santos, V. Tikhonchuk","doi":"10.1063/5.0031313","DOIUrl":"https://doi.org/10.1063/5.0031313","url":null,"abstract":"The generation of thin and high density plasma slabs at high repetition rate is a key issue for ultra-high intensity laser applications. We present a scheme to create such plasma slabs, based on the propagation and collision in a gas jet of two counter-propagating blast waves (BW). Each BW is launched by a sudden and local heating induced by a nanosecond laser beam that propagates along the side of the jet. The resulting cylindrical BW expands perpendicular to the beam. The shock front, bent by the gas jet density gradient, pushes and compresses the plasma toward the jet center. By using two parallel ns laser beams, this scheme enables to tailor independently two opposite sides of the jet, while avoiding the damage risks associated with counterpropagating laser beams. A parametric study is performed using two and three dimensional hydrodynamic, as well as kinetic simulations. The BWs bending combined with the collision in a stagnation regime increases the density by more than 10 times and generates a very thin (down to few microns), near to over-critical plasma slab with a high density contrast (> 100), and a lifetime of a few hundred picoseconds. Two dimensional particle-in-cell simulations are used to study the influence of plasma tailoring on proton acceleration by a high-intensity sub-picosecond laser pulse. Tailoring the plasma not only at the entrance but also the exit side of the ps-pulse enhances the proton beam collimation, increases significantly the number of high energy protons, as well as their maximum energy.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73587135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonplanar ion-acoustic subsonic shock waves in dissipative electron-ion-pcd plasmas","authors":"A. Mamun, B. Sharmin","doi":"10.1063/5.0031171","DOIUrl":"https://doi.org/10.1063/5.0031171","url":null,"abstract":"The dissipative electron-ion-pcd (positively charged dust) plasma, which is observed in both space and laboratory plasmas, is considered. The basic features of nonplanar cylindrical and spherical ion-acoustic subsonic shock waves in such a medium are investigated by deriving a modified Burgers equation using the reductive perturbation method. It is found that the stationary pcd species reduces the phase speed of the ion-acoustic waves, and consequently supports the subsonic shock waves due to the kinematic viscosity (acting as a source of dissipation) of the ion species. It is observed that the cylindrical and spherical subsonic shock waves evolve with time very significantly, and that the time evolution of the spherical shock structures is faster than that of the cylindrical ones. The implications of the results of the work to space and laboratory plasmas are discussed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85266989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of dynamic ions on band structure of plasmon excitations","authors":"M. Akbari-Moghanjoughi","doi":"10.1063/5.0026298","DOIUrl":"https://doi.org/10.1063/5.0026298","url":null,"abstract":"In this paper we develop a new method to study the plasmon energy band structure in multispecies plasmas. Using this method, we investigate plasmon dispersion band structure of different plasma systems with arbitrary degenerate electron fluid. The linearized Schrodinger-Poisson model is used to derive appropriate coupled pseudoforce system from which the energy dispersion structure is calculated. It is shown that the introduction of ion mobility, beyond the jellium (static ion) model with a wide plasmon energy band gap, can fundamentally modify the plasmon dispersion character leading to a new form of low-level energy band, due to the electron-ion band structure mixing. The effects ionic of charge state and chemical potential of the electron fluid on the plasmonic band structure indicate many new features and reveal the fundamental role played by ions in the phonon assisted plasmon excitations in the electron-ion plasma system. Moreover, our study reveals that ion charge screening has a significant impact on the plasmon excitations in ion containing plasmas. The energy band structure of pair plasmas confirm the unique role of ions on the plasmon excitations in many all plasma environments. Current research helps to better understand the underlying mechanisms of collective excitations in charged environment and the important role of heavy species on the elementary plasmon quasiparticles. The method developed in this research may also be extended for complex multispecies and magnetized quantum plasmas as well as to investigation the surface plasmon-polariton interactions in nanometallic structures.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91462767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Nosenko, M. Pustylnik, M. Rubin-Zuzic, A. Lipaev, A. Zobnin, A. Usachev, H. Thomas, M. Thoma, V. Fortov, O. Kononenko, A. Ovchinin
{"title":"Shear flow in a three-dimensional complex plasma in microgravity conditions","authors":"V. Nosenko, M. Pustylnik, M. Rubin-Zuzic, A. Lipaev, A. Zobnin, A. Usachev, H. Thomas, M. Thoma, V. Fortov, O. Kononenko, A. Ovchinin","doi":"10.1103/PhysRevResearch.2.033404","DOIUrl":"https://doi.org/10.1103/PhysRevResearch.2.033404","url":null,"abstract":"Shear flow in a three-dimensional complex plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). The shear flow was created in an extended suspension of microparticles by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analyzed and from these, using the Navier-Stokes equation, an upper estimate of the complex plasma's kinematic viscosity was calculated in the range of $0.2$--$6.7~{rm mm^2/s}$. This estimate is much lower than previously reported in ground-based experiments with 3D complex plasmas. Possible reasons of this difference are discussed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89462006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetric ideal magnetofluidostatic equilibria with nonvanishing pressure gradients in asymmetric confinement vessels","authors":"N. Sato","doi":"10.1063/5.0028155","DOIUrl":"https://doi.org/10.1063/5.0028155","url":null,"abstract":"We study the possibility of constructing steady magnetic fields satisfying the force balance equation of ideal magnetohydrodynamics with tangential boundary conditions in asymmetric confinement vessels, i.e. bounded regions that are not invariant under continuous Euclidean isometries (translations, rotations, or their combination). This problem is often encountered in the design of next-generation fusion reactors. We show that such configurations are possible if one relaxes the standard assumption that the vessel boundary corresponds to a pressure isosurface. We exhibit a smooth solution that possesses an Euclidean symmetry and yet solves the boundary value problem in an asymmetric ellipsoidal domain while sustaining a non-vanishing pressure gradient. This result provides a definitive answer to the problem of existence of regular ideal magnetofluidostatic equilibria in asymmetric bounded domains. The question remains open whether regular asymmetric solutions of the boundary value problem exist.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74274137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Maslov, D. Bondar, V. Grigorencko, I. Levchuk, I. Onishchenko
{"title":"CONTROL OF CHARACTERISTICS OF SELF-INJECTED AND ACCELERATED ELECTRON BUNCH IN PLASMA BY LASER PULSE SHAPING ON RADIUS, INTENSITY AND SHAPE","authors":"V. Maslov, D. Bondar, V. Grigorencko, I. Levchuk, I. Onishchenko","doi":"10.46813/2019-124-039","DOIUrl":"https://doi.org/10.46813/2019-124-039","url":null,"abstract":"At the laser acceleration of self-injected electron bunch by plasma wakefield it is important to form bunch with small energy spread and small size. It has been shown that laser-pulse shaping on radius, intensity and shape controls characteristics of the self-injected electron bunch and provides at certain shaping small energy spread and small size of self-injected and accelerated electron bunch.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81618991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Increase of amplitude of accelerating wakefield excited by sequence of short relativistic electron bunches in plasma at magnetic field use","authors":"D. Bondar, I. Levchuk, V. Maslov, I. Onishchenko","doi":"10.26565/2312-4334-2017-2-02","DOIUrl":"https://doi.org/10.26565/2312-4334-2017-2-02","url":null,"abstract":"Earlier, the authors found a mechanism for the sequence of short relativistic electron bunches, which leads to resonant excitation of the wakefield, even if the repetition frequency of bunches differs from the plasma frequency. In this case, the synchronization of frequencies is restored due to defocusing of the bunches which get into the bad phases with respect to the plasma wave. However, in this case, the bunches are lost, which as a result of this do not participate in the excitation of the wakefield. In this paper, numerical simulation was used to study the dynamics of electron bunches and the excitation of the wakefield in a magnetized plasma by a long sequence of short bunches of relativistic electrons. When a magnetic field is used, the defocussed bunches return to the region of interaction with the field after a certain time. In this case, the electrons of the bunches, returning to the necessary phases of the field, participate in the excitation of the wakefield. Also, the use of a magnetic field leads to an increase of the frequency of the excited wave relative to the repetition frequency of bunches. The latter increases the time for maintaining the resonance and, consequently, leads to an increase of the amplitude of the excited wakefield.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88887928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Simple Solver for the Two-Fluid Plasma Model Based on PseudoSpectral Time-Domain Algorithm","authors":"B. Morel, R. Giust, K. Ardaneh, F. Courvoisier","doi":"10.4208/CICP.OA-2020-0117","DOIUrl":"https://doi.org/10.4208/CICP.OA-2020-0117","url":null,"abstract":"We present a solver of 3D two-fluid plasma model for the simulation of short-pulse laser interactions with plasma. This solver resolves the equations of the two-fluid plasma model with ideal gas closure. We also include the Bhatnagar-Gross-Krook collision model. Our solver is based on PseudoSpectral Time-Domain (PSTD) method to solve Maxwell's curl equations. We use a Strang splitting to integrate Euler equations with source term: while Euler equations are solved with a composite scheme mixing Lax-Friedrichs and Lax-Wendroff schemes, the source term is integrated with a fourth-order Runge-Kutta scheme. This two-fluid plasma model solver is simple to implement because it only relies on finite difference schemes and Fast Fourier Transforms. It does not require spatially staggered grids. The solver was tested against several well-known problems of plasma physics. Numerical simulations gave results in excellent agreement with analytical solutions or with previous results from the literature.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84127875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and characterization of current sheets in collisionless plasmas turbulence","authors":"Amirhassan Chatraee Azizabadi","doi":"10.17169/REFUBIUM-28637","DOIUrl":"https://doi.org/10.17169/REFUBIUM-28637","url":null,"abstract":"The properties of current sheets forming in a ion-kinetically turbulent collisionless plasma are investigated by utilizing the results of two-dimensional hybrid-kinetic numerical simulations. For this sake the algorithm proposed by Zhdankin et al. (2013) for the analysis of current sheets forming in MHD-turbulent plasmas, was extended to analyse the role and propertes of current sheets formating in a much noisier kinetically turbulent plasma. The applicability of this approach to the analysis of kinetically-turbulent plasmas is verified. Invesigated are, e.g., the effects of the choice of parameters on the current sheet recognition, viz. the threshold current density, the minimum current density and of the local regions around current density peaks. The main current sheet properties are derived, their peak current density, the peak current carrier velocity (mainly electrons), the thickness and length of the current sheets, i.e. also their aspect ratio (length/thickness). By varying the grid resolution of the simulations it is shown that, as long as the electron inertia is not taken into account, the current sheets thin down well below ion inertial length scale until numerical (grid-resolution based) dissipation stops any the further thinning.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73700375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hamiltonian formulations for perturbed dissipationless plasma equations","authors":"A. Brizard, C. Chandre","doi":"10.1063/5.0028471","DOIUrl":"https://doi.org/10.1063/5.0028471","url":null,"abstract":"The Hamiltonian formulations for the perturbed Vlasov-Maxwell equations and the perturbed ideal magnetohydrodynamics (MHD) equations are expressed in terms of the perturbation derivative $partial{cal F}/partialepsilon equiv [{cal F}, {cal S}]$ of an arbitrary functional ${cal F}[vb{psi}]$ of the Vlasov-Maxwell fields $vb{psi} = (f,{bf E},{bf B})$ or the ideal MHD fields $vb{psi} = (rho,{bf u},s,{bf B})$, which are assumed to depend continuously on the (dimensionless) perturbation parameter $epsilon$. Here, $[;,;]$ denotes the functional Poisson bracket for each set of plasma equations and the perturbation {it action} functional ${cal S}$ is said to generate dynamically accessible perturbations of the plasma fields. The new Hamiltonian perturbation formulation introduces the framework for the application of functional Lie-transform perturbation methods in plasma physics and highlights the crucial roles played by polarization and magnetization in Vlasov-Maxwell and ideal MHD perturbation theories.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90990299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}