V. Nosenko, M. Pustylnik, M. Rubin-Zuzic, A. Lipaev, A. Zobnin, A. Usachev, H. Thomas, M. Thoma, V. Fortov, O. Kononenko, A. Ovchinin
{"title":"Shear flow in a three-dimensional complex plasma in microgravity conditions","authors":"V. Nosenko, M. Pustylnik, M. Rubin-Zuzic, A. Lipaev, A. Zobnin, A. Usachev, H. Thomas, M. Thoma, V. Fortov, O. Kononenko, A. Ovchinin","doi":"10.1103/PhysRevResearch.2.033404","DOIUrl":null,"url":null,"abstract":"Shear flow in a three-dimensional complex plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). The shear flow was created in an extended suspension of microparticles by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analyzed and from these, using the Navier-Stokes equation, an upper estimate of the complex plasma's kinematic viscosity was calculated in the range of $0.2$--$6.7~{\\rm mm^2/s}$. This estimate is much lower than previously reported in ground-based experiments with 3D complex plasmas. Possible reasons of this difference are discussed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevResearch.2.033404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Shear flow in a three-dimensional complex plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). The shear flow was created in an extended suspension of microparticles by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analyzed and from these, using the Navier-Stokes equation, an upper estimate of the complex plasma's kinematic viscosity was calculated in the range of $0.2$--$6.7~{\rm mm^2/s}$. This estimate is much lower than previously reported in ground-based experiments with 3D complex plasmas. Possible reasons of this difference are discussed.