{"title":"Preferential acceleration of positrons by a filamentation instability between an electron–proton beam and a pair plasma beam","authors":"M. Dieckmann, S. Spencer, M. Falk, G. Rowlands","doi":"10.1063/5.0021257","DOIUrl":"https://doi.org/10.1063/5.0021257","url":null,"abstract":"Particle-in-cell (PIC) simulations of collisionless jets of electrons and positrons in an ambient electron-proton plasma have revealed an acceleration of positrons at the expense of electron kinetic energy. The dominant instability within the jet was a filamentation instability between electrons, protons and positrons. In this work we show that a filamentation instability, between an initially unmagnetized ambient electron-proton plasma at rest and a beam of pair plasma that moves through it at a non-relativistic speed, indeed results in preferential positron acceleration. Filaments form that are filled predominantly with particles with the same direction of their electric current vector. Positron filaments are separated by electromagnetic fields from beam electron filaments. Some particles can cross the field boundary and enter the filament of the other species. Positron filaments can neutralize their net charge by collecting the electrons of the ambient plasma while protons cannot easily follow the beam electron filaments. Positron filaments can thus be compressed to a higher density and temperature than the beam electron filaments. Filament mergers, which take place after the exponential growth phase of the instability has ended, lead to an expansion of the beam electron filaments, which amplifies the magnetic field they generate and induces an electric field in this filament. Beam electrons lose a substantial fraction of their kinetic energy to the electric field. Some positrons in the beam electron filament are accelerated by the induced electric field to almost twice their initial speed. The simulations show that a weaker electric field is induced in the positron filament and particles in this filament hardly change their speed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73569376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A boundary value “reservoir problem” and boundary conditions for multi-moment multifluid simulations of sheaths","authors":"P. Cagas, A. Hakim, B. Srinivasan","doi":"10.1063/5.0024510","DOIUrl":"https://doi.org/10.1063/5.0024510","url":null,"abstract":"Multifluid simulations of plasma sheaths are increasingly used to model a wide variety of problems in plasma physics ranging from global magnetospheric flows around celestial bodies to plasma-wall interactions in thrusters and fusion devices. For multifluid problems, accurate boundary conditions to model an absorbing wall that resolves a classical sheath remains an open research area. This work justifies the use of vacuum boundary conditions for absorbing walls to show comparable accuracy between a multifluid sheath and lower moments of a continuum-kinetic sheath.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83960211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Salehi, M. Le, L. Railing, M. Kolesik, H. Milchberg
{"title":"Laser-Accelerated, Low-Divergence 15-MeV Quasimonoenergetic Electron Bunches at 1 kHz","authors":"F. Salehi, M. Le, L. Railing, M. Kolesik, H. Milchberg","doi":"10.1103/PhysRevX.11.021055","DOIUrl":"https://doi.org/10.1103/PhysRevX.11.021055","url":null,"abstract":"We demonstrate laser wakefield acceleration of quasi-monoenergetic electron bunches up to 15 MeV at 1 kHz repetition rate with 2.5 pC charge per bunch and a core with < 7 mrad beam divergence. Acceleration is driven by 5 fs, < 2.7 mJ laser pulses incident on a thin, near-critical density hydrogen gas jet. Low beam divergence is attributed to reduced sensitivity to laser carrier envelope phase slip, achieved in two ways using laser polarization and gas jet control: (1) electron injection into the wake on the gas jet's plasma density downramp, and (2) use of circularly polarized drive pulses. Under conditions of mild wavebreaking in the downramp, electron beam profiles have a 2D Lorentzian shape consistent with a kappa electron energy distribution. Such distributions had previously been observed only in space or dusty plasmas. We attribute this shape to the strongly correlated collisionless bunch confined by the quadratic wakefield bubble potential, where transverse velocity space diffusion is imparted to the bunch by the red-shifted laser field in the bubble.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80146883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermomagnetic instability of plasma composition gradients","authors":"J. Sadler, Hui Li","doi":"10.1063/5.0027210","DOIUrl":"https://doi.org/10.1063/5.0027210","url":null,"abstract":"We show that, under Braginskii magneto-hydrodynamics, anti-parallel gradients in average ion charge state and electron temperature can be unstable to the growth of self-generated magnetic fields. The instability is analogous to the field-generating thermomagnetic instability, although it is driven by the collisional thermal force magnetic source term rather than the Biermann battery term. The gradient in ion charge state causes a gradient in collisionality, which couples with temperature perturbations to create a self-generated magnetic field. This magnetic field deflects the electron heat flux in a way that reinforces the temperature perturbation. The derived linearized growth rate, typically on hydrodynamic timescales, includes the resistive and thermal smoothing. It increases with large ion composition gradients and electron heat flux, conditions typical of the hohlraum walls or contaminant mix jets in inertial confinement fusion implosions. However, extended magneto-hydrodynamic simulations indicate that the instability is usually dominated and stabilized by the nonlinear Nernst advection, in a similar manner to the standard thermomagnetic instability.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81124619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical scheme for evaluating the collision integrals for triple interactions in relativistic plasma","authors":"M. Prakapenia, I. Siutsou, G. Vereshchagin","doi":"10.1063/5.0022931","DOIUrl":"https://doi.org/10.1063/5.0022931","url":null,"abstract":"Binary interactions in relativistic plasma, such as Coulomb and Compton scattering as well as pair creation and annihilation are well known and studied in details. Triple interactions, namely relativistic bremsstrahlung, double Compton scattering, radiative pair production, triple pair production/annihilation and their inverse processes, are usually considered as emission processes in astrophysical problems, as well as in laboratory plasmas. Their role in plasma kinetics is fundamental [1]. We present a new conservative scheme for computation of Uehling-Uhlenbeck collision integral for all triple interactions in relativistic plasma based on direct integration of exact QED matrix elements. Reaction rates for thermal distributions are compared, where possible, with the corresponding analytic expressions, showing good agreement. Our results are relevant for quantitative description of relativistic plasmas out of equilibrium, both in astrophysical and laboratory conditions.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76340642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse","authors":"A. S. Samsonov, I. Kostyukov, E. Nerush","doi":"10.1063/5.0035347","DOIUrl":"https://doi.org/10.1063/5.0035347","url":null,"abstract":"Development of the self-sustained quantum-electrodynamical (QED) cascade in a single strong laser pulse is studied analytically and numerically. The hydrodynamical approach is used to construct the analytical model of the cascade evolution, which includes the key features of the cascade observed in 3D QED particle-in-cell (QED-PIC) simulations such as the magnetic field predominance in the cascade plasma and laser energy absorption. The equations of the model are derived in the closed form and are solved numerically. Direct comparison between the solutions of the model equations and 3D QED-PIC simulations shows that our model is able to describe the complex nonlinear process of the cascade development qualitatively well. The various regimes of the interaction based on the intensity of the laser pulse are revealed in both the solutions of the model equations and the results of the QED-PIC simulations.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81166692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Jirka, P. Sasorov, S. Bulanov, G. Korn, B. Rus, S. V. Bulanov
{"title":"Reaching high laser intensity by a radiating electron","authors":"M. Jirka, P. Sasorov, S. Bulanov, G. Korn, B. Rus, S. V. Bulanov","doi":"10.1103/PhysRevA.103.053114","DOIUrl":"https://doi.org/10.1103/PhysRevA.103.053114","url":null,"abstract":"Interaction of an electron with the counter-propagating electromagnetic wave is studied theoretically and with the particle-in-cell simulations in the regime of quantum radiation reaction. We find the electron energy in the center of the laser pulse, as it is a key factor for testing the non-linear quantum electrodynamics vacuum properties in the laser-electron collision in the regime of multi-photon Compton scattering and vacuum Cherenkov radiation. With multiparametric analysis we provide the conditions on electron initial energy for reaching the center of the laser pulse and emitting Cherenkov photons.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87606890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topology of the warm plasma dispersion relation at the second harmonic electron cyclotron resonance layer","authors":"P. L. Joostens, E. Westerhof","doi":"10.1063/5.0033880","DOIUrl":"https://doi.org/10.1063/5.0033880","url":null,"abstract":"The Warm Plasma Dispersion Relation, for waves in the electron cyclotron resonance range of frequencies, can be cast into the form of a bi-quadratic equation for $N_perp$, where the coefficients are a function of $N_perp^2$ and an iterative procedure is required to obtain a solution. However, this iterative procedure is not well understood and fails to converge towards a solution at the second harmonic resonance layer. In particular at higher densities where the wave can couple to an electron Bernstein wave. This paper focuses on a solution to the poor convergence of the iterative method, enabling determination of the topology of the dispersion relation around the second harmonic using a fully relativistic code for oblique waves. A feed-forward controller is proposed with the ability to adjust the rotation of a step of $N_perp^2$ within the complex plane, while also limiting the step-size. It is shown that implementation of the controller stabilizes unstable solutions, while improving overall robustness of the iteration. This allows the evaluation of the coupling between the fast extraordinary mode and electron Bernstein waves at the second harmonic electron cyclotron resonance layer, for non-perpendicularly propagating waves.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83669567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exact hybrid-kinetic equilibria for magnetized plasmas with shearing flows","authors":"G. Guzzi, A. Settino, F. Valentini, F. Malara","doi":"10.1051/0004-6361/202039656","DOIUrl":"https://doi.org/10.1051/0004-6361/202039656","url":null,"abstract":"Context. Magnetized plasmas characterized by shearing flows are present in many natural contexts, such as the Earth's magnetopause and the solar wind. The collisionless nature of involved plasmas requires a kinetic description. When the width of the shear layer is of the order of ion scales, the Hybrid Vlasov-Maxwell approach can be adopted. Aims. The aim of the paper is to derive explicit forms for stationary configurations of magnetized plasmas with planar shearing flows,within the Hybrid Vlasov-Maxwell description. Two configurations are considered: the first with a uniform magnetic field obliquely directed with respect to the bulk velocity; and the second with a uniform-magnitude variable-direction magnetic field. Methods. Stationary ion distribution functions are obtained by combining single-particle constant of motions, which are derived studying particle dynamics. Preliminary information about the form of the distribution functions are analytically derived considering a local approximation for the background electromagnetic field. Then, a numerical method is set up to obtain a solution for general profiles. Results. The explicit distribution functions that are found allow to obtain profiles of density, bulk velocity, temperature and heat flux. Anisotropy and agyrotropy in the distribution function are also evaluated. Stationarity of the solution during numerical simulations is checked in the uniform oblique magnetic field case. Conclusions. The considered configurations can be used as models for the Earth's magnetopause in simulations of the Kelvin-Helmholtz instability.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82031144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Mitteau, S. Berrebi, P. Chappuis, Ph. Darses, A. Dufayet, L. Garampon, D. Guilhem, M. Lipa, V. Martin, H. Roche
{"title":"Non destructive testing of actively cooled plasma facing components by means of thermal transient excitation and infrared imaging.","authors":"R. Mitteau, S. Berrebi, P. Chappuis, Ph. Darses, A. Dufayet, L. Garampon, D. Guilhem, M. Lipa, V. Martin, H. Roche","doi":"10.1016/B978-0-444-82762-3.50081-1","DOIUrl":"https://doi.org/10.1016/B978-0-444-82762-3.50081-1","url":null,"abstract":"","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84704506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}