arXiv: Plasma Physics最新文献

筛选
英文 中文
On the upper limit of laser intensity attainable in nonideal vacuum 非理想真空中可达到的激光强度上限
arXiv: Plasma Physics Pub Date : 2020-11-30 DOI: 10.1364/PRJ.416555
Yitong Wu, L. Ji, Ruxin Li
{"title":"On the upper limit of laser intensity attainable in nonideal vacuum","authors":"Yitong Wu, L. Ji, Ruxin Li","doi":"10.1364/PRJ.416555","DOIUrl":"https://doi.org/10.1364/PRJ.416555","url":null,"abstract":"The upper limit of the laser field strength in perfect vacuum is usually considered as the Schwinger field, corresponding to ~10^29W/cm^2. We investigate such limitations under realistic non-ideal vacuum conditions and find out that intensity suppression appears starting from 10^25W/cm^2, showing an upper threshold at 1026W/cm^2 level if the residual electron density in chamber surpasses 109cm^-^3. This is because the presence of residual electrons triggers the avalanche of quantum-electrodynamics cascade that creates copious electron and positron pairs. The leptons are further trapped within the driving laser field due to radiation-reaction, which significantly depletes the laser energy. The relationship between the attainable intensity and the vacuity is given according to particle-in-cell simulations and theoretical analysis. These results answer a critical problem on the achievable light intensity based on present vacuum conditions and provide a guideline for future 100's-Petawatt class laser development.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77246811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Resonant electron–plasmon interactions in drifting electron gas 飘移电子气体中共振电子-等离子体相互作用
arXiv: Plasma Physics Pub Date : 2020-11-30 DOI: 10.1063/5.0039067
M. Akbari-Moghanjoughi
{"title":"Resonant electron–plasmon interactions in drifting electron gas","authors":"M. Akbari-Moghanjoughi","doi":"10.1063/5.0039067","DOIUrl":"https://doi.org/10.1063/5.0039067","url":null,"abstract":"In this paper we investigate the resonant electron-plasmon interactions in a drifting electron gas of arbitrary degeneracy. The kinetic corrected quantum hydrodyanmic model is transformed into the effective Schr\"{o}dinger-Poisson model and driven coupled pseudoforce system is obtained via the separation of variables from the appropriately linearized system. It is remarked that in the low phase-speed kinetic regime the characteristic particle-like plasmon branch is profoundly affected by this correction which is a function of the electron number density and temperature. We also present an alternative explanation of the quantum wave-particle duality as a direct consequence of resonant electron-plasmon interaction (electron murmuration). In this picture drifting electrons are resonantly scattered by spatial electrostatic energy distribution, characterizing them by the de Broglie's oscillations. The phase-shift and amplitude of excitations in damped driven pseudoforce system is derived and their variations in terms of normalized chemical potential and electron temperature is studied. In particular we investigate the kinetic correction effect on energy dispersion relation in the electron gas in detail. It is revealed that only the low phase-speed branch of the dispersion curve is significantly affected by the kinetic correction. It is also found that increase in the electron number density leads to increase in effective mass and consequently decrease in electron mobility while the increase in the electron temperature has the converse effect. The kinetic correction also significantly lowers the plasmon conduction band. Current model may be further elaborated to investigate the beam-plasmon interaction and energy exchange in multispecies quantum plasmas.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76805439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Inflationary stimulated Raman scattering in shock-ignition plasmas 激波点火等离子体中膨胀激发的拉曼散射
arXiv: Plasma Physics Pub Date : 2020-11-24 DOI: 10.1063/5.0022901
S. Spencer, A. Seaton, T. Goffrey, T. Arber
{"title":"Inflationary stimulated Raman scattering in shock-ignition plasmas","authors":"S. Spencer, A. Seaton, T. Goffrey, T. Arber","doi":"10.1063/5.0022901","DOIUrl":"https://doi.org/10.1063/5.0022901","url":null,"abstract":"In the shock-ignition inertial confinement fusion scheme, high-intensity lasers propagate through an inhomogeneous coronal plasma, driving a shock designed to cause fuel ignition. During the high-intensity ignitor laser pulse, SRS backscatter in the long scale-length coronal plasma is likely to be in the kinetic regime. In this work, we use one-dimensional particle-in-cell simulations to show that there is a non-linear frequency shift caused by kinetic effects, resulting in the growth of Stimulated Raman Scattering (SRS) in an inhomogeneous plasma far exceeding the predictions of the fluid theory, so-called inflationary SRS or iSRS. We find that iSRS occurs over a wide range of density scale-lengths relevant to shock-ignition and other directly-driven inertial confinement fusion schemes. The presence of iSRS in shock-ignition plasmas has implications for the theoretical gains from shock-ignition inertial confinement fusion. Here we quantify the intensity threshold for the onset of iSRS for shock-ignition relevant parameters.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75749298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Diffusion regime of electron–electron collisions in weakly ionized plasmas 弱电离等离子体中电子-电子碰撞的扩散机制
arXiv: Plasma Physics Pub Date : 2020-11-23 DOI: 10.1063/5.0038623
B. Breizman, G. Stupakov, G. Vekstein
{"title":"Diffusion regime of electron–electron collisions in weakly ionized plasmas","authors":"B. Breizman, G. Stupakov, G. Vekstein","doi":"10.1063/5.0038623","DOIUrl":"https://doi.org/10.1063/5.0038623","url":null,"abstract":"We consider weakly ionized plasma where frequent elastic scattering of electrons on neutrals change the individual acts and the rate of electron-electron collisions significantly. In this case, the kinetics of electron thermalization is very different from that in fully ionized plasma. The colliding electrons diffuse because of fast scattering on neutrals. We demonstrate how a proper account of this diffusion enables one to estimate the characteristic time of electron thermalization. We also present a rigorous derivation of the kinetic equation for electrons by using Bogolyubov method based on Liouville equations for multi-particle distribution functions.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81602060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Guiding center and gyrokinetic orbit theory for large electric field gradients and strong shear flows 大电场梯度和强剪切流的导向中心和陀螺动力学轨道理论
arXiv: Plasma Physics Pub Date : 2020-11-17 DOI: 10.1063/5.0037889
I. Joseph
{"title":"Guiding center and gyrokinetic orbit theory for large electric field gradients and strong shear flows","authors":"I. Joseph","doi":"10.1063/5.0037889","DOIUrl":"https://doi.org/10.1063/5.0037889","url":null,"abstract":"The guiding center and gyrokinetic theory of magnetized particle motion is extended to the regime of large electric field gradients perpendicular to the magnetic field. A gradient in the electric field directly modifies the oscillation frequency and causes the Larmor orbits to deform from circular to elliptical trajectories. In order to retain a good adiabatic invariant, there can only be strong dependence on a single coordinate at lowest order, so that resonances do not generate chaotic motion that destroys the invariant. When the gradient across magnetic flux surfaces is dominant, the guiding center drift velocity becomes anisotropic in response to external forces and additional curvature drifts must be included. The electric polarization density remains gyrotropic, but both the polarization and magnetization are modified by the change in gyrofrequency. The theory can be applied to strong shear flows, such as are commonly observed in the edge transport barrier of a high-performance tokamak (H-mode) pedestal, even if the toroidal/guide field is small. Yet, the theory retains a mathematical form that is similar to the standard case and can readily be implemented within existing simulation tools.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83511020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A two-fluid analysis of waves in a warm ion–electron plasma 热离子-电子等离子体中波的双流体分析
arXiv: Plasma Physics Pub Date : 2020-11-12 DOI: 10.1063/5.0029534
Jordi De Jonghe, Rony Keppens
{"title":"A two-fluid analysis of waves in a warm ion–electron plasma","authors":"Jordi De Jonghe, Rony Keppens","doi":"10.1063/5.0029534","DOIUrl":"https://doi.org/10.1063/5.0029534","url":null,"abstract":"Following recent work, we discuss waves in a warm ideal two-fluid plasma consisting of electrons and ions starting from a completely general, ideal two-fluid dispersion relation. The plasma is characterised by five variables: the electron and ion magnetisations, the squared electron and ion sound speeds, and a parameter describing the angle between the propagation vector and the magnetic field. The dispersion relation describes 6 pairs of waves which we label S, A, F, M, O, and X. Varying the angle, it is argued that parallel and perpendicular propagation (with respect to the magnetic field) exhibit unique behaviour. This behaviour is characterised by the crossing of wave modes which is prohibited at oblique angles. We identify up to 6 different parameter regimes where a varying number of exact mode crossings in the special parallel or perpendicular orientations can occur. We point out how any ion-electron plasma has a critical magnetisation (or electron cyclotron frequency) at which the cutoff ordering changes, leading to different crossing behaviour. These are relevant for exotic plasma conditions found in pulsar and magnetar environments. Our discussion is fully consistent with ideal relativistic MHD and contains light waves. Additionally, exploiting the general nature of the dispersion relation, phase and group speed diagrams can be computed at arbitrary wavelengths for any parameter regime. Finally, we recover earlier approximate dispersion relations that focus on low-frequency limits and make direct correspondences with some selected kinetic theory results.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74232758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Stationary states of polytropic plasmas 多向等离子体的稳态
arXiv: Plasma Physics Pub Date : 2020-11-11 DOI: 10.1063/5.0024222
R. Guo
{"title":"Stationary states of polytropic plasmas","authors":"R. Guo","doi":"10.1063/5.0024222","DOIUrl":"https://doi.org/10.1063/5.0024222","url":null,"abstract":"In this paper, we prove that the kappa distribution is the stationary solution of the Vlasov-Poisson system in an inhomogeneous plasma under the polytropic equation of state and an assumption restricting the local velocity distribution to a specific mathematical form. The profiles of density, temperature, and electric potential are obtained theoretically. The kappa index can be determined if the initial state is known. In order to verify the theory, particle-in-cell simulations are made and the results show excellent agreement with the theoretical predictions for density, temperature, and velocity distributions of electrons. It is shown that the electron velocity distribution of spatially inhomogeneous plasma evolves from an initial Maxwellian to the final kappa distribution. It is also found that the value of kappa index in the final stationary state depends on the initial state of plasma.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74493599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
ITER cold VDEs in the limit of perfectly conducting walls ITER在完全导电壁的极限下冷却vde
arXiv: Plasma Physics Pub Date : 2020-11-11 DOI: 10.1063/5.0037464
C. Clauser, S. Jardin
{"title":"ITER cold VDEs in the limit of perfectly conducting walls","authors":"C. Clauser, S. Jardin","doi":"10.1063/5.0037464","DOIUrl":"https://doi.org/10.1063/5.0037464","url":null,"abstract":"Recently, it has been shown that a vertical displacement event (VDE) can occur in ITER even when the walls are perfect conductors, as a consequence of the current quench [A. H. Boozer, Physics of Plasmas 26 114501 (2019)]. We used the extended-MHD code M3D-C1 with an ITER-like equilibrium and induced a current quench to explore cold VDEs in the limit of perfectly conducting walls, using different wall geometries. In the particular case of a rectangular wall with the side walls far away from the plasma, we obtained very good agreement with the analytical model developed by Boozer that considers a top/bottom flat-plates wall. We show that the solution in which the plasma stays at the initial equilibrium position is improved when bringing the side walls closer to the plasma. When using the ITER first wall in the limit of a perfect conductor, the plasma stays stable at the initial equilibrium position far beyond the value predicted by the flat-plates wall limit. On the other hand, when considering the limit in which the inner shell of the ITER vacuum vessel is acting as a perfect conductor, the plasma is displaced during the current quench but the edge safety factor stays above $2$ longer in the current decay compared to the flat-plates wall limit. In all the simulated cases, the vertical displacement is found to be strongly dependent on the plasma current, in agreement with a similar finding in the flat-plates wall limit, showing an important difference with usual VDEs in which the current quench is not a necessary condition.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76573005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Turbulent transport of fast ions in tokamak plasmas in the presence of resonant magnetic perturbations 共振磁扰动下托卡马克等离子体中快离子的湍流输运
arXiv: Plasma Physics Pub Date : 2020-11-04 DOI: 10.1063/5.0035541
D. Palade
{"title":"Turbulent transport of fast ions in tokamak plasmas in the presence of resonant magnetic perturbations","authors":"D. Palade","doi":"10.1063/5.0035541","DOIUrl":"https://doi.org/10.1063/5.0035541","url":null,"abstract":"The effects of resonant magnetic perturbations on the turbulent transport of fast ions in tokamak devices are investigated using a theoretical transport model of test-particle type. The direct numerical simulation method is used to compute, via the transport model, the diffusion coefficients. The numerical results are in good agreement with other, analytically derived, estimations. It is found that finite Larmor radius effects decrease algebraically the transport, while the amplitude of magnetic perturbations has an opposite effect. In the presence of stochastic dynamics, the asymmetric toroidal magnetic field induces a small, radial, outward pinch. A synergistic mechanism of non-linear coupling between turbulence and magnetic perturbations enhances the radial diffusion. General scaling laws are proposed for the transport coefficients.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77498288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Electron Acceleration during Macroscale Non-Relativistic Magnetic Reconnection 宏观尺度非相对论性磁重联中的电子加速
arXiv: Plasma Physics Pub Date : 2020-11-02 DOI: 10.13016/ZC8D-FUMF
H. Arnold, J. Drake, M. Swisdak, F. Guo, J. Dahlin, Bin Chen, G. Fleishman, L. Glesener, E. Kontar, T. Phan, Chengcai Shen
{"title":"Electron Acceleration during Macroscale Non-Relativistic Magnetic Reconnection","authors":"H. Arnold, J. Drake, M. Swisdak, F. Guo, J. Dahlin, Bin Chen, G. Fleishman, L. Glesener, E. Kontar, T. Phan, Chengcai Shen","doi":"10.13016/ZC8D-FUMF","DOIUrl":"https://doi.org/10.13016/ZC8D-FUMF","url":null,"abstract":"The first self-consistent simulations of electron acceleration during magnetic reconnection in a macroscale system are presented. Consistent with solar flare observations the spectra of energetic electrons take the form of power-laws that extend more than two decades in energy. The drive mechanism for these nonthermal electrons is Fermi reflection in growing and merging magnetic flux ropes. A strong guide field is found to suppress the production of nonthermal electrons by weakening the Fermi drive mechanism. For a weak guide field the total energy content of nonthermal electrons dominates that of the hot thermal electrons even though their number density remains small. Our results are benchmarked with the hard x-ray, radio and extreme ultra-violet (EUV) observations of the X8.2-class solar flare on September 10, 2017.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74172411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信