On the upper limit of laser intensity attainable in nonideal vacuum

Yitong Wu, L. Ji, Ruxin Li
{"title":"On the upper limit of laser intensity attainable in nonideal vacuum","authors":"Yitong Wu, L. Ji, Ruxin Li","doi":"10.1364/PRJ.416555","DOIUrl":null,"url":null,"abstract":"The upper limit of the laser field strength in perfect vacuum is usually considered as the Schwinger field, corresponding to ~10^29W/cm^2. We investigate such limitations under realistic non-ideal vacuum conditions and find out that intensity suppression appears starting from 10^25W/cm^2, showing an upper threshold at 1026W/cm^2 level if the residual electron density in chamber surpasses 109cm^-^3. This is because the presence of residual electrons triggers the avalanche of quantum-electrodynamics cascade that creates copious electron and positron pairs. The leptons are further trapped within the driving laser field due to radiation-reaction, which significantly depletes the laser energy. The relationship between the attainable intensity and the vacuity is given according to particle-in-cell simulations and theoretical analysis. These results answer a critical problem on the achievable light intensity based on present vacuum conditions and provide a guideline for future 100's-Petawatt class laser development.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/PRJ.416555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The upper limit of the laser field strength in perfect vacuum is usually considered as the Schwinger field, corresponding to ~10^29W/cm^2. We investigate such limitations under realistic non-ideal vacuum conditions and find out that intensity suppression appears starting from 10^25W/cm^2, showing an upper threshold at 1026W/cm^2 level if the residual electron density in chamber surpasses 109cm^-^3. This is because the presence of residual electrons triggers the avalanche of quantum-electrodynamics cascade that creates copious electron and positron pairs. The leptons are further trapped within the driving laser field due to radiation-reaction, which significantly depletes the laser energy. The relationship between the attainable intensity and the vacuity is given according to particle-in-cell simulations and theoretical analysis. These results answer a critical problem on the achievable light intensity based on present vacuum conditions and provide a guideline for future 100's-Petawatt class laser development.
非理想真空中可达到的激光强度上限
理想真空中激光场强的上限通常被认为是Schwinger场,对应于~10^29W/cm^2。我们在实际的非理想真空条件下研究了这种限制,发现从10^25W/cm^2开始出现强度抑制,当腔内剩余电子密度超过109cm^-^3时,出现1026W/cm^2的上限阈值。这是因为残余电子的存在引发了量子电动力学级联的雪崩,产生了大量的电子和正电子对。由于辐射反应,轻子进一步被困在驱动激光场中,这极大地消耗了激光能量。通过粒子池模拟和理论分析,给出了可达强度与真空度的关系。这些结果回答了当前真空条件下可实现光强的关键问题,并为未来100 - petawatt级激光器的发展提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信