Archives of Toxicology最新文献

筛选
英文 中文
Mono-n-hexyl phthalate: exposure estimation and assessment of health risks based on levels found in human urine samples 邻苯二甲酸单正己酯:根据人体尿液样本中的含量估算暴露量并评估健康风险。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-17 DOI: 10.1007/s00204-024-03835-x
Ralph Pirow, Ulrike Bernauer, Annegret Blume, Adrian Cieszynski, Gabriele Flingelli, Astrid Heiland, Matthias Herzler, Bettina Huhse, Christian Riebeling, Esther Rosenthal, Moustapha Sy, Thomas Tietz, Achim Trubiroha, Andreas Luch
{"title":"Mono-n-hexyl phthalate: exposure estimation and assessment of health risks based on levels found in human urine samples","authors":"Ralph Pirow,&nbsp;Ulrike Bernauer,&nbsp;Annegret Blume,&nbsp;Adrian Cieszynski,&nbsp;Gabriele Flingelli,&nbsp;Astrid Heiland,&nbsp;Matthias Herzler,&nbsp;Bettina Huhse,&nbsp;Christian Riebeling,&nbsp;Esther Rosenthal,&nbsp;Moustapha Sy,&nbsp;Thomas Tietz,&nbsp;Achim Trubiroha,&nbsp;Andreas Luch","doi":"10.1007/s00204-024-03835-x","DOIUrl":"10.1007/s00204-024-03835-x","url":null,"abstract":"<div><p>Mono-n-hexyl phthalate (MnHexP) is a primary metabolite of di-n-hexyl phthalate (DnHexP) and other mixed side-chain phthalates that was recently detected in urine samples from adults and children in Germany. DnHexP is classified as toxic for reproduction category 1B in Annex VI of Regulation (EC) 1272/2008 and listed in Annex XIV of the European chemical legislation REACH; thereby, its use requires an authorisation. Health-based guidance values for DnHexP are lacking and a full-scale risk assessment has not been carried out under REACH. The detection of MnHexP in urine samples raises questions about the sources of exposure and concerns of consumer safety. Here, we propose the calculation of a provisional oral tolerable daily intake value (TDI) of 63 µg/kg body weight/day for DnHexP and compare it to intake levels corresponding to levels of MnHexP found in urine. The resulting mean intake levels correspond to less than 0.2% of the TDI, and maximum levels to less than 5%. The TDI was derived by means of an approximate probabilistic analysis using the credible interval from benchmark dose modelling of published ex vivo data on reduced foetal testosterone production in rats. Thus, for the dose associated to a 20% reduction in testosterone production, a lower and upper credible interval of 14.9 and 30.0 mg/kg bw/day, respectively, was used. This is considered a conservative approach, since apical developmental endpoints (e.g. changed anogenital distance) were only observed at higher doses. In addition, we modelled various scenarios of the exposure to the precursor substance DnHexP from different consumer products, taking measured contamination levels into account, and estimated systemic exposure doses. Of the modelled scenarios including the application of sunscreen (as a lotion or pump spray), the use of lip balm, and the wearing of plastic sandals, and considering conservative assumptions, the use of DnHexP-contaminated sunscreen was highlighted as a major contributing factor. A hypothetical calculation using conservative assumptions for the latter resulted in a margin of safety in relation to the lower credible interval of 3267 and 1007 for adults and young children, respectively. Most importantly, it was found that only a fraction of the TDI is reached in all studied exposure scenarios. Thus, with regard to the reported DnHexP exposure, a health risk can be considered very unlikely.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-024-03835-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the AKT/ERK cascade and its role in Parkinson disease 揭示 AKT/ERK 级联及其在帕金森病中的作用。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-13 DOI: 10.1007/s00204-024-03829-9
Priyanka Kumari Keshri, Surya Pratap Singh
{"title":"Unraveling the AKT/ERK cascade and its role in Parkinson disease","authors":"Priyanka Kumari Keshri,&nbsp;Surya Pratap Singh","doi":"10.1007/s00204-024-03829-9","DOIUrl":"10.1007/s00204-024-03829-9","url":null,"abstract":"<div><p>Parkinson disease represents a significant and growing burden on global healthcare systems, necessitating a deeper understanding of their underlying molecular mechanisms for the development of effective treatments. The AKT and ERK pathways play crucial roles in the disease, influencing multiple cellular pathways that support neuronal survival. Researchers have made notable progress in uncovering how these pathways are controlled by upstream kinases and how their downstream effects contribute to cell signalling. However, as we delve deeper into their intricacies, we encounter increasing complexity, compounded by the convergence of multiple signalling pathways. Many of their targets overlap with those of other kinases, and they not only affect specific substrates but also influence entire signalling networks. This review explores the intricate interplay of the AKT/ERK pathways with several other signalling cascades, including oxidative stress, endoplasmic reticulum stress, calcium homeostasis, inflammation, and autophagy, in the context of Parkinson disease. We discuss how dysregulation of these pathways contributes to disease progression and neuronal dysfunction, highlighting potential therapeutic targets for intervention. By elucidating the complex network of interactions between the AKT/ERK pathways and other signalling cascades, this review aims to provide insights into the pathogenesis of Parkinson disease and describe the development of novel therapeutic strategies.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic activation of WHO-congeners PCB28, 52, and 101 by human CYP2A6: evidence from in vitro and in vivo experiments 人类 CYP2A6 对世卫组织致癌物质 PCB28、52 和 101 的代谢活化:来自体外和体内实验的证据。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-13 DOI: 10.1007/s00204-024-03836-w
Isabella Randerath, Thomas Schettgen, Julian Peter Müller, Jens Rengelshausen, Susanne Ziegler, Nathalia Quinete, Jens Bertram, Salah Laieb, Elke Schaeffeler, Andrea Kaifie, Katja S. Just, Aaron Voigt, Roman Tremmel, Matthias Schwab, Julia C. Stingl, Thomas Kraus, Patrick Ziegler
{"title":"Metabolic activation of WHO-congeners PCB28, 52, and 101 by human CYP2A6: evidence from in vitro and in vivo experiments","authors":"Isabella Randerath,&nbsp;Thomas Schettgen,&nbsp;Julian Peter Müller,&nbsp;Jens Rengelshausen,&nbsp;Susanne Ziegler,&nbsp;Nathalia Quinete,&nbsp;Jens Bertram,&nbsp;Salah Laieb,&nbsp;Elke Schaeffeler,&nbsp;Andrea Kaifie,&nbsp;Katja S. Just,&nbsp;Aaron Voigt,&nbsp;Roman Tremmel,&nbsp;Matthias Schwab,&nbsp;Julia C. Stingl,&nbsp;Thomas Kraus,&nbsp;Patrick Ziegler","doi":"10.1007/s00204-024-03836-w","DOIUrl":"10.1007/s00204-024-03836-w","url":null,"abstract":"<div><p>Despite extensive research on the metabolism of polychlorinated biphenyls (PCBs), knowledge gaps persist regarding their isoform-specific biotransformation pathways. This study aimed to elucidate the role of different cytochrome P450 enzymes in PCB metabolism, focusing on WHO-congeners 2,4,4′-trichlorobiphenyl (PCB28), 2,2′,5,5′-tetrachlorobiphenyl (PCB52), and 2,2′,4,5,5′-pentachlorobiphenyl (PCB101). Utilizing engineered HEK293 cell lines, we investigated the in vitro metabolism of these PCBs by CYP1A2, CYP2C8, CYP2C9, CYP3A4, CYP2A6, and CYP2E1, revealing robust production of hydroxylated metabolites. Our results show that CYP2A6 plays a major role in the metabolism of these congeners responsible for predominant formation of para-position hydroxylated metabolites, with concentrations reaching up to 1.61 µg/L (5,89 nM) for PCB28, 316.98 µg/L (1,03 µM) for PCB52, and 151.1 µg/L (441 nM) for PCB101 from a 20 µM parent PCB concentration. Moreover, concentration-dependent cytotoxic and cytostatic effects induced by reactive intermediates of the PCB hydroxylation pathway were observed in HEK293CYP2A6 cells, for all three congeners tested. CYP2A6 was specifically capable of activating PCBs 28 and 101 to genotoxic metabolites which produced genetic defects which were propagated to subsequent generations, potentially contributing to carcinogenesis. In a clinical study examining CYP2A6 enzyme activity in formerly exposed individuals with elevated internal PCB levels, a participant with increased enzyme activity showed a direct association between the phenotypic activity of CYP2A6 and the metabolism of PCB28, confirming the role of CYP2A6 in the in vivo metabolism of PCB28 also in humans. These results altogether reinforce the concept that CYP2A6 plays a pivotal role in PCB congener metabolism and suggest its significance in human health, particularly in the metabolism of lower chlorinated, volatile PCB congeners.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-024-03836-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicokinetics of 2-ethylhexyl salicylate (EHS) and its seven metabolites in humans after controlled single dermal exposure to EHS 控制人体单次皮肤接触水杨酸 2-乙基己酯 (EHS) 及其七种代谢物的毒物动力学。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-12 DOI: 10.1007/s00204-024-03827-x
Laura Kuhlmann, Thomas Göen, Julia Hiller
{"title":"Toxicokinetics of 2-ethylhexyl salicylate (EHS) and its seven metabolites in humans after controlled single dermal exposure to EHS","authors":"Laura Kuhlmann,&nbsp;Thomas Göen,&nbsp;Julia Hiller","doi":"10.1007/s00204-024-03827-x","DOIUrl":"10.1007/s00204-024-03827-x","url":null,"abstract":"<div><p>The chemical UV filter 2-ethylhexyl salicylate (EHS) is used in various personal-care products. The dermal and oral metabolism of EHS have already been targeted by different studies. However, toxicokinetic data after a single dermal exposure to EHS was missing. In our study, three volunteers were dermally exposed to a commercial EHS-containing sunscreen for 9 h with an application dose of 2 mg sunscreen per cm<sup>2</sup> body surface area. The exposure was performed indoors, and sunscreen was applied on about 75% of the total skin area. Complete urine voids were collected over 72 h and eight blood samples were drawn from each subject. Urine samples were analyzed for EHS and seven known metabolites (5OH-EHS, 4OH-EHS, 2OH-EHS, 6OH-EHS, 4oxo-EHS, 5oxo-EHS, and 5cx-EPS) by online-SPE UPLC MS/MS. The peaks of urinary elimination occurred 10–11 h after application. The elimination half-lives (Phase 1) were between 6.6 and 9.7 h. The dominant urinary biomarkers were EHS itself, followed by 5OH-EHS, 5cx-EPS, 5oxo-EHS, and 4OH-EHS. 2OH-EHS, 6OH-EHS, and 4oxo-EHS were detected only in minor amounts. An enhanced analysis of conjugation species revealed marginal amounts of unconjugated metabolites and up to 40% share of sulfate conjugates for 5OH-EHS, 5oxo-EHS, and 5cx-EPS. The results demonstrated a delayed systemic resorption of EHS via the dermal route. Despite an extensive metabolism, the parent compound occurred as main urinary parameter. The delayed dermal resorption as well as the slow elimination of EHS indicate an accumulation up to toxicological relevant doses during daily repeated dermal application to large skin areas.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A negative regulatory role of β-cell-derived exosomes in the glucose-stimulated insulin secretion of recipient β-cells β细胞衍生的外泌体在葡萄糖刺激受体β细胞分泌胰岛素过程中发挥负向调节作用。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-10 DOI: 10.1007/s00204-024-03838-8
Chia-Ching Yu, Ching-Yao Yang, Ting-Yu Chang, Kuo-Cheng Lan, Shing-Hwa Liu
{"title":"A negative regulatory role of β-cell-derived exosomes in the glucose-stimulated insulin secretion of recipient β-cells","authors":"Chia-Ching Yu,&nbsp;Ching-Yao Yang,&nbsp;Ting-Yu Chang,&nbsp;Kuo-Cheng Lan,&nbsp;Shing-Hwa Liu","doi":"10.1007/s00204-024-03838-8","DOIUrl":"10.1007/s00204-024-03838-8","url":null,"abstract":"<div><p>Exosomes are extracellular vesicles that play a role in intercellular communication through the transportation of their cargo including mRNAs, microRNAs, proteins, and nucleic acids. Exosomes can also regulate glucose homeostasis and insulin secretion under diabetic conditions. However, the role of exosomes in insulin secretion in islet β-cells under physiological conditions remains to be clarified. The aim of this study was to investigate whether exosomes derived from pancreatic islet β-cells could affect insulin secretion in naïve β-cells. We first confirmed that exosomes derived from the RIN-m5f β-cell line interfered with the glucose-stimulated insulin secretion (GSIS) of recipient β-cells without affecting cell viability. The exosomes significantly reduced the protein expression levels of phosphorylated Akt, phosphorylated GSK3α/β, CaMKII, and GLUT2 (insulin-related signaling molecules), and they increased the protein expression levels of phosphorylated NFκB-p65 and Cox-2 (inflammation-related signaling molecules), as determined by a Western blot analysis. A bioinformatics analysis of Next-Generation Sequencing data suggested that exosome-carried microRNAs, such as miR-1224, -122-5p, -133a-3p, -10b-5p, and -423-5p, may affect GSIS in recipient β-cells. Taken together, these findings suggest that β-cell-derived exosomes may upregulate exosomal microRNA-associated signals to dysregulate glucose-stimulated insulin secretion in naïve β-cells.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prolonged exposure to NaAsO2 induces thyroid dysfunction and inflammatory injury in Sprague‒Dawley rats, involvement of NLRP3 inflammasome‒mediated pyroptosis 长期暴露于NaAsO2会诱发Sprague-Dawley大鼠甲状腺功能障碍和炎症损伤,NLRP3炎性体介导的热蛋白沉积参与其中。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-09 DOI: 10.1007/s00204-024-03837-9
Lili Fan, Qian Song, Ying Jin, Rui He, Heng Diao, Peng Luo, Dapeng Wang
{"title":"Prolonged exposure to NaAsO2 induces thyroid dysfunction and inflammatory injury in Sprague‒Dawley rats, involvement of NLRP3 inflammasome‒mediated pyroptosis","authors":"Lili Fan,&nbsp;Qian Song,&nbsp;Ying Jin,&nbsp;Rui He,&nbsp;Heng Diao,&nbsp;Peng Luo,&nbsp;Dapeng Wang","doi":"10.1007/s00204-024-03837-9","DOIUrl":"10.1007/s00204-024-03837-9","url":null,"abstract":"<div><p>Arsenic, a well-known hazardous toxicant, has been found in recent years to act as an environmental endocrine disruptor that accumulates in various endocrine organs, impeding the normal physiological functions of these organs and altering hormone secretion levels. Moreover, some research has demonstrated a correlation between arsenic exposure and thyroid functions, suggesting that arsenic has a toxicological effect on the thyroid gland. However, the specific type of thyroid gland damage caused by arsenic exposure and its potential molecular mechanism remain poorly understood. In this study, the toxic effects of sodium arsenite (NaAsO<sub>2</sub>) exposure at different doses (0, 2.5, 5.0 and 10.0 mg/kg bw) and over different durations (12, 24 and 36 weeks) on thyroid tissue and thyroid hormone levels in Sprague‒Dawley (SD) rats were investigated, and the specific mechanisms underlying the effects were also explored. Our results showed that NaAsO<sub>2</sub> exposure can cause accumulation of this element in the thyroid tissue of rats. More importantly, chronic exposure to NaAsO<sub>2</sub> significantly upregulated the expression of NLRP3 inflammasome-related proteins in thyroid tissue, leading to pyroptosis of thyroid cells and subsequent development of thyroid dysfunction, inflammatory injury, epithelial–mesenchymal transition (EMT), and even fibrotic changes in the thyroid glands of SD rats. These findings increase our understanding of the toxic effects of arsenic exposure on the thyroid gland and its functions.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpreting mono- and poly-SCRA intoxications from an activity-based point of view: JWH-018 equivalents in serum as a comparative measure 从基于活性的角度解读单-SCRA 和多-SCRA 中毒:以血清中的 JWH-018 当量作为比较指标。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-08 DOI: 10.1007/s00204-024-03830-2
Liesl K. Janssens, Michaela J. Sommer, Katharina Elisabeth Grafinger, Maren Hermanns-Clausen, Volker Auwärter, Christophe P. Stove
{"title":"Interpreting mono- and poly-SCRA intoxications from an activity-based point of view: JWH-018 equivalents in serum as a comparative measure","authors":"Liesl K. Janssens,&nbsp;Michaela J. Sommer,&nbsp;Katharina Elisabeth Grafinger,&nbsp;Maren Hermanns-Clausen,&nbsp;Volker Auwärter,&nbsp;Christophe P. Stove","doi":"10.1007/s00204-024-03830-2","DOIUrl":"10.1007/s00204-024-03830-2","url":null,"abstract":"<div><p>Synthetic cannabinoid receptor agonists (SCRAs) are a class of synthetic drugs that mimic and greatly surpass the effect of recreational cannabis. Acute SCRA intoxications are in general difficult to assess due to the large number of compounds involved, differing widely in both chemical structure and pharmacological properties. The rapid pace of emergence of unknown SCRAs hampers on one hand the timely availability of methods for identification and quantification to confirm and estimate the extent of the SCRA intoxication. On the other hand, lack of knowledge about the harm potential of emerging SCRAs hampers adequate interpretation of serum concentrations in intoxication cases. In the present study, a novel comparative measure for SCRA intoxications was evaluated, focusing on the cannabinoid activity (versus serum concentrations), which can be measured in serum extracts with an untargeted bioassay assessing ex vivo CB<sub>1</sub> activity. Application of this principle to a series of SCRA intoxication cases (<i>n</i> = 48) allowed for the determination of activity equivalents, practically entailing a conversion from different SCRA serum concentrations to a JWH-018 equivalent. This allowed for the interpretation of both mono- (<i>n</i> = 34) and poly-SCRA (<i>n</i> = 14) intoxications, based on the intrinsic potential of the present serum levels to exert cannabinoid activity (cf<i>.</i> pharmacological/toxicological properties). A non-distinctive toxidrome was confirmed, showing no relation to CB<sub>1</sub> activity. The JWH-018 equivalent was partly related to the poison severity score (PSS) and causality of the clinical intoxication elicited by the SCRA. Altogether, this equivalent concept allows to comparatively and timely interpret (poly-)SCRA intoxications based on CB<sub>1</sub> activity.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of the pharmacokinetics of clozapine and its metabolites by the dynamics of its distribution in the oral fluid of healthy volunteers 通过氯氮平及其代谢物在健康志愿者口腔液中的动态分布研究氯氮平及其代谢物的药代动力学。
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-07 DOI: 10.1007/s00204-024-03832-0
Qianwen Shi, Lele Wang, Qian Zheng, Yefei Pan, Xiaohui Tan, Yao Liu, Shanlin Fu, Ande Ma, Zhiwen Wei, Keming Yun
{"title":"A study of the pharmacokinetics of clozapine and its metabolites by the dynamics of its distribution in the oral fluid of healthy volunteers","authors":"Qianwen Shi,&nbsp;Lele Wang,&nbsp;Qian Zheng,&nbsp;Yefei Pan,&nbsp;Xiaohui Tan,&nbsp;Yao Liu,&nbsp;Shanlin Fu,&nbsp;Ande Ma,&nbsp;Zhiwen Wei,&nbsp;Keming Yun","doi":"10.1007/s00204-024-03832-0","DOIUrl":"10.1007/s00204-024-03832-0","url":null,"abstract":"<div><p>Clozapine (CLZ) -related accidents or crimes are common in the world. Oral fluid drug detection is a convenient measure of dealing with things like that. There has not been any literature reported detailedly the representation rule of clozapine and its metabolites in oral fluid so far. The study aimed to describe the pharmacokinetics of CLZ and its metabolites N-desmethylclozapine and clozapine-N-oxide in human oral fluid after a single 12.5 mg oral dose of CLZ. Twenty-nine volunteers, including 20 males and 9 females, were recruited, and 2 mL oral fluid was collected from each participant at post-consumption time-points of prior (zero), 0.5, 1.5, 3, 5, 8, 12, 24, 36, 51, 82, and 130 h, respectively. Analytes of interest were extracted with solid-phase extraction and analyzed with liquid chromatography tandem mass spectrometry method. Pharmacokinetic parameters were calculated using the pharmacokinetic software DAS according to the non-compartment model. The maximum concentration, the time of maximum concentration, oral clearance, and the elimination half-life of clozapine were 16.57 ± 9.63 ng/mL, 4.53 ± 3.61 h, 57.65 ± 23.77 L/h and 53.58 ± 52.28 h, respectively. The maximum concentration, the time of maximum concentration, and the elimination half-life of the metabolite N-desmethylclozapine were 3.08 ± 1.19 ng/mL, 9.38 ± 9.33 h and 62.67 ± 82.57 h, respectively; of clozapine-N-oxide were 1.15 ± 0.36 ng/mL, 4.53 ± 2.19 h and 19.15 ± 23.11 h, respectively. It was the first study on the pharmacokinetics of CLZ and its metabolites in the oral fluid of Chinese healthy volunteers, and it provided a basis for the therapeutic drug monitoring and toxicological interpretation in clozapine-related cases.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the mechanism of troglitazone-mediated idiosyncratic drug-induced liver injury with individual-centric models 以个体为中心的模型揭示曲格列酮介导的特异性药物诱导肝损伤的机制
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-06 DOI: 10.1007/s00204-024-03833-z
Salomé Roux, Sara Cherradi, Hong Tuan Duong
{"title":"Uncovering the mechanism of troglitazone-mediated idiosyncratic drug-induced liver injury with individual-centric models","authors":"Salomé Roux,&nbsp;Sara Cherradi,&nbsp;Hong Tuan Duong","doi":"10.1007/s00204-024-03833-z","DOIUrl":"10.1007/s00204-024-03833-z","url":null,"abstract":"<div><p>Idiosyncratic drug-induced liver injury is a rare and unpredictable event. Deciphering its initiating-mechanism is a hard task as its occurrence is individual dependent. Thus, studies that utilize models that are not individual-centric might drive to a general mechanistic conclusion that is not necessarily true. Here, we use the individual-centric spheroid model to analyze the initiating-mechanism of troglitazone-mediated iDILI risk. Individual-centric spheroid models were generated using a proprietary cell educating technology. These educated spheroids contain hepatocytes, hepatic stellate cells, activated monocyte-derived macrophages, and dendritic cells under physiological conditions. We show that phases 1 and 2 drug-metabolizing enzymes were induced in an individual-dependent manner. However, we did not observe any association of DEMs induction and troglitazone (TGZ)-mediated iDILI risk. We analyzed TGZ-mediated iDILI and found that a 44-year-old male showed iDILI risk that is associated with TGZ-mediated suppression of IL-12 expression by autologous macrophages and dendritic cells. We performed a rescue experiment and showed that treatment of spheroids from this 44-year-old male with TGZ and recombinant IL-12 suppressed iDILI risk. We confirmed the mechanism in another 31-year-old female with iDILI risk. We demonstrate here that individual-centric spheroid are versatile models that allow to predict iDILI risk and to analyze a direct effect of the drug on activated macrophages and dendritic cells to uncover the initiating-mechanism of iDILI occurrence. This model opens perspectives for a personalized strategy to mitigate iDILI risk.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-024-03833-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polystyrene nano-plastics impede skeletal muscle development and induce lipid accumulation via the PPARγ/LXRβ pathway in vivo and in vitro in mice 聚苯乙烯纳米塑料通过 PPARγ/LXRβ 途径阻碍小鼠体内和体外骨骼肌发育并诱导脂质积累
IF 4.8 2区 医学
Archives of Toxicology Pub Date : 2024-08-03 DOI: 10.1007/s00204-024-03831-1
Ran Xu, Jing-wen Cao, Yuan Geng, Tian-chao Xu, Meng-yao Guo
{"title":"Polystyrene nano-plastics impede skeletal muscle development and induce lipid accumulation via the PPARγ/LXRβ pathway in vivo and in vitro in mice","authors":"Ran Xu,&nbsp;Jing-wen Cao,&nbsp;Yuan Geng,&nbsp;Tian-chao Xu,&nbsp;Meng-yao Guo","doi":"10.1007/s00204-024-03831-1","DOIUrl":"10.1007/s00204-024-03831-1","url":null,"abstract":"<div><p>Nano-plastics (NPs) have emerged as a significant environmental pollutant, widely existing in water environment, and pose a serious threat to health and safety with the intake of animals. Skeletal muscle, a vital organ for complex life activities and functional demands, has received limited attention regarding the effects of NPs. In this study, the effects of polystyrene NPs (PS-NPs) on skeletal muscle development were studied by oral administration of different sizes (1 mg/kg) of PS-NPs in mice. The findings revealed that PS-NPs resulted in skeletal muscle damage and significantly hindered muscle differentiation, exhibiting an inverse correlation with PS-NPs particle size. Morphological analysis demonstrated PS-NPs caused partial disruption of muscle fibers, increased spacing between fibers, and lipid accumulation. RT-qPCR and western blots analyses indicated that PS-NPs exposure downregulated the expression of myogenic differentiation-related factors (Myod, Myog and Myh2), activated PPARγ/LXRβ pathway, and upregulated the expressions of lipid differentiation-related factors (SREBP1C, SCD-1, FAS, ACC1, CD36/FAT, ADIPOQ, C/EBPα and UCP-1). In vitro experiments, C<sub>2</sub>C<sub>12</sub> cells were used to confirm cellular penetration of PS-NPs (0, 100, 200, 400 μg/mL) through cell membranes along with activation of PPARγ expression. Furthermore, to verify LXRβ as a key signaling molecule, silencing RNA transfection experiments were conducted, resulting in no increase in the expressions of PPARγ, LXRβ, SREBP1C, FAS, CD36/FAT, ADIPOQ, C/EBPα and UCP-1 even after exposure to PS-NPs. However, the expressions of SCD-1and ACC1 remained unaffected. The present study evidenced that exposure to PS-NPs induced lipid accumulation via the PPARγ/LXRβ pathway thereby influencing skeletal muscle development.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信