Christian Kersch, Viktor Masutin, Laura Kuhlmann, Rasha Alsaleh, Andrea Kaifie, Simone Schmitz-Spanke
{"title":"U937细胞中谷氨酰胺解损伤和免疫代谢失调:职业性和环境性皮肤暴露于紫外线和苯并[a]芘的关键机制。","authors":"Christian Kersch, Viktor Masutin, Laura Kuhlmann, Rasha Alsaleh, Andrea Kaifie, Simone Schmitz-Spanke","doi":"10.1007/s00204-025-04155-4","DOIUrl":null,"url":null,"abstract":"<div><p>Dermal exposure to polycyclic aromatic hydrocarbons (PAHs) and UV irradiation in occupational and environmental settings poses a health risk by inducing skin toxicity, including immunomodulatory effects. This study investigated the effects of benzo[a]pyrene (B[a]P), a well-characterized PAH, at three concentrations (0.04 nM, 4 nM, and 4 µM) and UV irradiation on human monocytic U937 cells, employing both single and combined exposure scenarios. An integrated metabolomics and toxicological approach was utilized to assess cellular responses, with a focus on understanding the immunometabolic effects of these exposures. Our findings revealed that only the highest B[a]P concentration in combination with UV irradiation resulted in significant metabolic dysregulation and impaired cellular function. Notably, we observed a pronounced downregulation of glutaminolysis, a critical metabolic pathway for cellular energy production and biosynthesis. This was evidenced by decreased levels of glutamate and key intermediates within the tricarboxylic acid cycle (e.g., succinate, fumarate, malate, and citrate), as well as reduced levels of glycine, a precursor for glutathione synthesis. In parallel, toxicological assays revealed increased levels of oxidative stress markers, lipid peroxidation, and enhanced DNA damage. Furthermore, the combined exposure led to alterations in tryptophan metabolism and dysregulation of lipid species, particularly sphingolipids and phosphatidylinositols. These findings lead us to propose the hypothesis that metabolic disruption, specifically the impairment of glutaminolysis, initiated a cascade of events, including increased oxidative stress, lipid peroxidation, and ultimately, ferroptosis in our study. Our results indicate that the combined exposure to UV irradiation and B[a]P can induce immunometabolic reprogramming and significantly contribute to the pathogenesis of inflammatory skin diseases.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 11","pages":"4481 - 4492"},"PeriodicalIF":6.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00204-025-04155-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Glutaminolysis impairment and immunometabolic dysregulation in U937 cells: Key mechanisms in occupational and environmental skin exposure to UV and benzo[a]pyrene\",\"authors\":\"Christian Kersch, Viktor Masutin, Laura Kuhlmann, Rasha Alsaleh, Andrea Kaifie, Simone Schmitz-Spanke\",\"doi\":\"10.1007/s00204-025-04155-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dermal exposure to polycyclic aromatic hydrocarbons (PAHs) and UV irradiation in occupational and environmental settings poses a health risk by inducing skin toxicity, including immunomodulatory effects. This study investigated the effects of benzo[a]pyrene (B[a]P), a well-characterized PAH, at three concentrations (0.04 nM, 4 nM, and 4 µM) and UV irradiation on human monocytic U937 cells, employing both single and combined exposure scenarios. An integrated metabolomics and toxicological approach was utilized to assess cellular responses, with a focus on understanding the immunometabolic effects of these exposures. Our findings revealed that only the highest B[a]P concentration in combination with UV irradiation resulted in significant metabolic dysregulation and impaired cellular function. Notably, we observed a pronounced downregulation of glutaminolysis, a critical metabolic pathway for cellular energy production and biosynthesis. This was evidenced by decreased levels of glutamate and key intermediates within the tricarboxylic acid cycle (e.g., succinate, fumarate, malate, and citrate), as well as reduced levels of glycine, a precursor for glutathione synthesis. In parallel, toxicological assays revealed increased levels of oxidative stress markers, lipid peroxidation, and enhanced DNA damage. Furthermore, the combined exposure led to alterations in tryptophan metabolism and dysregulation of lipid species, particularly sphingolipids and phosphatidylinositols. These findings lead us to propose the hypothesis that metabolic disruption, specifically the impairment of glutaminolysis, initiated a cascade of events, including increased oxidative stress, lipid peroxidation, and ultimately, ferroptosis in our study. Our results indicate that the combined exposure to UV irradiation and B[a]P can induce immunometabolic reprogramming and significantly contribute to the pathogenesis of inflammatory skin diseases.</p></div>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\"99 11\",\"pages\":\"4481 - 4492\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00204-025-04155-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00204-025-04155-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00204-025-04155-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Glutaminolysis impairment and immunometabolic dysregulation in U937 cells: Key mechanisms in occupational and environmental skin exposure to UV and benzo[a]pyrene
Dermal exposure to polycyclic aromatic hydrocarbons (PAHs) and UV irradiation in occupational and environmental settings poses a health risk by inducing skin toxicity, including immunomodulatory effects. This study investigated the effects of benzo[a]pyrene (B[a]P), a well-characterized PAH, at three concentrations (0.04 nM, 4 nM, and 4 µM) and UV irradiation on human monocytic U937 cells, employing both single and combined exposure scenarios. An integrated metabolomics and toxicological approach was utilized to assess cellular responses, with a focus on understanding the immunometabolic effects of these exposures. Our findings revealed that only the highest B[a]P concentration in combination with UV irradiation resulted in significant metabolic dysregulation and impaired cellular function. Notably, we observed a pronounced downregulation of glutaminolysis, a critical metabolic pathway for cellular energy production and biosynthesis. This was evidenced by decreased levels of glutamate and key intermediates within the tricarboxylic acid cycle (e.g., succinate, fumarate, malate, and citrate), as well as reduced levels of glycine, a precursor for glutathione synthesis. In parallel, toxicological assays revealed increased levels of oxidative stress markers, lipid peroxidation, and enhanced DNA damage. Furthermore, the combined exposure led to alterations in tryptophan metabolism and dysregulation of lipid species, particularly sphingolipids and phosphatidylinositols. These findings lead us to propose the hypothesis that metabolic disruption, specifically the impairment of glutaminolysis, initiated a cascade of events, including increased oxidative stress, lipid peroxidation, and ultimately, ferroptosis in our study. Our results indicate that the combined exposure to UV irradiation and B[a]P can induce immunometabolic reprogramming and significantly contribute to the pathogenesis of inflammatory skin diseases.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.