Journal of Materials Chemistry A最新文献

筛选
英文 中文
Efficient electrocatalytic glucose oxidation coupled water electrolysis driven by the Ni-foam supported Ni-P nanowire arrays 由镍泡沫支撑的镍-P 纳米线阵列驱动的高效电催化葡萄糖氧化耦合水电解
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta06649a
Hengwei Lou, Yikai Yang, Xiuming Bu, Haoxin Fan, Duo Weng, Jian Zhang, Wei Gao, Dan Wen
{"title":"Efficient electrocatalytic glucose oxidation coupled water electrolysis driven by the Ni-foam supported Ni-P nanowire arrays","authors":"Hengwei Lou, Yikai Yang, Xiuming Bu, Haoxin Fan, Duo Weng, Jian Zhang, Wei Gao, Dan Wen","doi":"10.1039/d4ta06649a","DOIUrl":"https://doi.org/10.1039/d4ta06649a","url":null,"abstract":"Using the thermodynamically favorable glucose oxidation reaction (GOR) to replace oxygen evolution reaction (OER) not only enables energy-efficient hydrogen production but also yields high-value products for water electrolysis. Herein, self-supported nickel phosphide nanowire arrays on Ni foam (Ni-P@NF) were facilely synthesized for GOR-assisted hydrogen production. Ni-P@NF can provide a current density of 100 mA cm-2 for GOR at 1.32 V (vs. RHE) and yield formic acid as the main product with the Faraday efficiency up to 97 %. The partial reconstruction of Ni-P into NiOOH on the surface during the GOR was recognized to comprehend the GOR catalytic mechanism. By coupling GOR and HER with Ni-P@NF as the electrodes, a low voltage of 1.43 V is required to drive the current density of 10 mA cm-2 for stable hydrogen generation and glucose conversion simultaneously. Thus, this work achieved energy-efficient hydrogen production and formic acid generation, providing of the well-aligned Ni-P nanowire arrays as the bifunctional catalysts for biomass oxidation-assisted water splitting.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"14 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solventless, Rapid-polymerizable Liquid Resins from Solid Carboxylic Acids through Low-viscosity Acid/Base Complexes 从固体羧酸到低粘度酸/碱络合物的无溶剂、可快速聚合的液体树脂
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta05417b
Grant M Musgrave, Eden Y Yau, Huang Sijia, Caleb Reese, Chen Wang
{"title":"Solventless, Rapid-polymerizable Liquid Resins from Solid Carboxylic Acids through Low-viscosity Acid/Base Complexes","authors":"Grant M Musgrave, Eden Y Yau, Huang Sijia, Caleb Reese, Chen Wang","doi":"10.1039/d4ta05417b","DOIUrl":"https://doi.org/10.1039/d4ta05417b","url":null,"abstract":"Bio-based carboxylic acids are some of the most available renewable chemicals, but since they are solids with high melting temperatures, they cannot be directly used as liquid resins. To this end, we report the formation of supramolecular complexes between an amino methacrylate and various solid carboxylic acids. The ionically bonded methacrylates exhibit low viscosities and rapid reaction kinetics for free-radical mediated polymerization, showing quantitative methacrylate conversions within one minute of irradiation at 5 mW/cm2 405nm light. We demonstrate the implementation of these acid-base complexes as a neat resin system that comprises orthogonal polymerization reactions (free-radical methacrylate polymerization and epoxy-acid polymerization reactions), which yields high-strength network polymer materials.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"18 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic intercalation of AB2O4 perovskite oxides for synergistic enhanced redox activity in sulphonated Ti3C2Tx MXene for energy storage applications 在用于储能应用的磺化 Ti3C2Tx MXene 中战略性地插层 AB2O4 包晶氧化物,以协同增强氧化还原活性
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta05816j
Jitesh Pani, Priyanka Chaudhary, Hitesh Borkar, Meng-Fang Lin
{"title":"Strategic intercalation of AB2O4 perovskite oxides for synergistic enhanced redox activity in sulphonated Ti3C2Tx MXene for energy storage applications","authors":"Jitesh Pani, Priyanka Chaudhary, Hitesh Borkar, Meng-Fang Lin","doi":"10.1039/d4ta05816j","DOIUrl":"https://doi.org/10.1039/d4ta05816j","url":null,"abstract":"Flexible supercapacitors are emerging as efficient, fast storage devices for new generation electronics. Two-dimensional (2D) transition metal carbides (MXene) have garnered attention as supercapacitor electrodes owing to their conductive layered sheets and the tunability of surface functional groups. In the present work, the Ti C3 2Tx MXene surface was sulphonated using dimethyl sulfoxide (DMSO) and intercalated with AB2O4(A= Co and Ni, B= Fe) perovskite nanoparticle (NPs). The sulphonated MXene (TMS) was processed using a sonication method in DMSO solventelectrolyte (0.1M H2SO4) interaction. to enhance the surface area and redox active sites forThe redox dominated enhanced specific capacitance was observed in 3 wt% CoFe2O4 (CFO) interacted TMS (3CTMS) and 3 wt% NiFe2O4 (NFO) interacted TMS (3NTMS), confirmed by Electrochemical Impedance Spectroscopy (EIS) and the Dunn’s method analysis. The specific capacitance of 3CTMS was found to be 593.81 F/g at 5 mV/sec, with an excellent cyclic stability of 81.75% after 10,000 cycles. A flexible symmetric supercapacitor fabricated with 3CTMS showed energy and power density of 4.177 Wh/kg and 512.17 W/kg, respectively. The flexible supercapacitor has been utilized in real time applications by charging and discharge to power 5 Light-Emitting Diodes (LEDs) with different forward voltages.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"71 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bimetallic-ions co-intercalation to stabilize vanadium-oxygen bond towards high-performance aqueous zinc-ion storage 双金属离子共掺杂稳定钒氧键,实现高性能锌离子水体存储
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta05938g
Yulin Jiang, Xia Wen, Yinuo Li, Yuhang Li, Yanan Peng, Wang Feng, Xiaohui Li, Junbo Yang, Luying Song, Ling Huang, Hang Sun, Jianping Shi
{"title":"Bimetallic-ions co-intercalation to stabilize vanadium-oxygen bond towards high-performance aqueous zinc-ion storage","authors":"Yulin Jiang, Xia Wen, Yinuo Li, Yuhang Li, Yanan Peng, Wang Feng, Xiaohui Li, Junbo Yang, Luying Song, Ling Huang, Hang Sun, Jianping Shi","doi":"10.1039/d4ta05938g","DOIUrl":"https://doi.org/10.1039/d4ta05938g","url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) have received increasing attention in large-scale energy storage systems because of their appealing features with respect to safety, cost, and scalability. Although vanadium oxides with different compositions demonstrate promising potential as the cathodes of AZIBs, the narrow interlayer spacing, inferior electronic conductivity, and high dissolution in electrolyte seriously restrict their practical applications. Here we design an ingenious bimetallic-ions (Mg2+ and Al3+) co-intercalation strategy to boost the AZIBs performances of V6O131.31H2O (VOH). The bimetallic-ions intercalation expands the interlayer spacing, increases the electronic conductivity, and more importantly stabilizes the vanadium-oxygen bond in VOH, which promotes the ion/electron transport kinetics and restrains the vanadium oxides dissolution. As expected, MgAl-VOH cathodes deliver ultrahigh specific capacities of 524.9 and 275.6 mAh g−1 at the current densities of 0.1 and 5 A g−1, respectively, comparable to the highest value in vanadium oxides. The underlying zinc-ion storage mechanism is unambiguously clarified with the aid of density function theory calculations and in-situ structure characterizations. This work opens up a new avenue for boosting AZIBs performances by designing bimetallic-ions co-intercalated cathodes.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"10 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What impact does ammonia have on the microstructure of the precursor and the electrochemical performance of Ni-rich layered oxides? 氨对前驱体的微观结构和富镍层状氧化物的电化学性能有何影响?
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta06142j
Jilu Zhang, Xinyue Zhai, Tian Zhao, Xiaoxia Yang, Qin Wang, Zhongjun Chen, Meng-Cheng Chen, Jian-Jie Ma, Ying-Rui Lu, Sung-Fu Hung, Weibo Hua
{"title":"What impact does ammonia have on the microstructure of the precursor and the electrochemical performance of Ni-rich layered oxides?","authors":"Jilu Zhang, Xinyue Zhai, Tian Zhao, Xiaoxia Yang, Qin Wang, Zhongjun Chen, Meng-Cheng Chen, Jian-Jie Ma, Ying-Rui Lu, Sung-Fu Hung, Weibo Hua","doi":"10.1039/d4ta06142j","DOIUrl":"https://doi.org/10.1039/d4ta06142j","url":null,"abstract":"The role of ammonia concentration in determining the particle shape and size of Ni-rich cathode materials during co-precipitation, though recognized as important, remains insufficiently understood in terms of its underlying mechanisms. In this study, we explore the effects of five distinct ammonia concentrations (0.2 mol/L, 0.3 mol/L, 0.4 mol/L, gradually increasing from 0 to 0.4 mol/L, and decreasing from 0.4 to 0.12 mol/L) on the microstructure of the Ni0.95Al0.05(OH)2.05 precursor throughout the precipitation process. The results reveal that ammonia concentration significantly influences both nucleation and crystal growth rates, with higher ammonia levels reducing nucleation rates and leading to more uniform agglomerates. Additionally, ammonia concentration affects the thickness-to-length ratio of the precursor's primary particles, which in turn influences the morphology of the LiNi0.95Al0.05O2 cathode materials during lithiation. Importantly, the study demonstrates that the electrochemical properties of LiNi0.95Al0.05O2 are more closely related to the shape of the primary particles than to the secondary particles, highlighting the critical importance of microstructural control in the design of next-generation Li-ion batteries. This study demonstrates the critical impact of ammonia concentration on particle characteristics. The results offer valuable insights for improving battery performance.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"1 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-Beam-Evaporated NiOX for Efficient and Stable Semi-Transparent Perovskite Solar Cells and Modules 电子束蒸发 NiOX 用于高效稳定的半透明过氧化物太阳能电池和组件
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta07138g
Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng, Jianfeng Lu
{"title":"Electron-Beam-Evaporated NiOX for Efficient and Stable Semi-Transparent Perovskite Solar Cells and Modules","authors":"Junye Pan, Jiahui Chen, Bingxin Duan, Yuxi Zhang, Peiran Hou, Yanqing Zhu, Min Hu, Wangnan Li, Yi-Bing Cheng, Jianfeng Lu","doi":"10.1039/d4ta07138g","DOIUrl":"https://doi.org/10.1039/d4ta07138g","url":null,"abstract":"Semi-transparent perovskite solar cells (ST-PSCs) have tremendous potential as smart windows owing to their higher efficiency and visible transmittance. However, most of previous ST-PSCs were fabricated by spin-coating methods with vulnerable materials, which are not stable at higher temperature (> 60 °C) and the processes are not scalable. Herein, thermal stable ST-PSCs have been fabricated by using vacuum deposited CsPbBr3 perovskite and electron-beam evaporation deposited NiOX. Furthermore, we further introduced an ultrathin P3HT buffer layer before depositing NiOX to avoid the damage of perovskite morphology by electron-beam. We found that this P3HT buffer layer not only protects the perovskite film from the damage of electron beam, but also facilitates the hole transfer from perovskite to NiOX. As a result, we achieved champion efficiencies of 7.1% for small area (active area = 0.16 cm2) solar cells and 5.5% for 5 cm × 5 cm mini-modules (active area = 10.0 cm2) with an AVT of 49.1%. Moreover, the non-encapsulated devices retained 93% of their initial performance after aging at 65 °C and a relative humidity (RH) of 55 ± 10% for 30 days.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"35 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous diffusion and remnant hardening with excellent electromechanical compatibility in alkaline niobate composites 碱性铌酸盐复合材料中具有优异机电兼容性的异质扩散和残余硬化
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta07326f
Hongjiang Li, Ning Chen, Jie Xing, Wenbin Liu, Wei Shi, Hao Chen, Zhi Tan, Manjing Tang, Mingyue Mo, Jianguo Zhu
{"title":"Heterogeneous diffusion and remnant hardening with excellent electromechanical compatibility in alkaline niobate composites","authors":"Hongjiang Li, Ning Chen, Jie Xing, Wenbin Liu, Wei Shi, Hao Chen, Zhi Tan, Manjing Tang, Mingyue Mo, Jianguo Zhu","doi":"10.1039/d4ta07326f","DOIUrl":"https://doi.org/10.1039/d4ta07326f","url":null,"abstract":"Both low mechanical losses and large piezoelectric coefficient (<em>d</em><small><sub>33</sub></small>) are essential in high-power piezoelectric applications. However, achieving both a large <em>d</em><small><sub>33</sub></small> and a high mechanical quality factor (<em>Q</em><small><sub>m</sub></small>) is generally considered challenging due to the inherent trade-off between these properties. This challenge is particularly pronounced in the development of lead-free piezoelectric materials. In this work, we present a novel approach that integrates heterogeneous diffusion with remnant hardening in potassium sodium niobate (KNN)-based composites. This method results in a more than threefold increase in the <em>Q</em><small><sub>m</sub></small>, jumping from 56 to 205 while a high <em>d</em><small><sub>33</sub></small> value (<em>d</em><small><sub>33</sub></small> = 370 pC/N) is maintained, significantly outperforming previous reports. Structural characterization and phase-field simulations revealed that the synergistic effects of local structural heterogeneity and local stress fields achieve excellent electromechanical compatibility. This dual modulation effectively overcomes the longstanding conflict between piezoelectric properties and mechanical losses. These findings present a promising pathway to enhance the commercial viability of lead-free KNN-based piezoelectric ceramics, making a significant advancement in the development of high-performance, environmentally friendly piezoelectric materials.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"108 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule 通过单一有机小分子实现高效碳基可印刷介观过氧化物太阳能电池的缺陷管理和结晶调节
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta06877g
Jinjiang Wang, Dongjie Wang, Dang Xu, Yang Zhang, Tianhuan Huang, Doudou Zhang, Zheling Zhang, Jian Xiong, Yu Huang, Jian Zhang
{"title":"Defect management and crystallization regulation for high-efficiency carbon-based printable mesoscopic perovskite solar cells via a single organic small molecule","authors":"Jinjiang Wang, Dongjie Wang, Dang Xu, Yang Zhang, Tianhuan Huang, Doudou Zhang, Zheling Zhang, Jian Xiong, Yu Huang, Jian Zhang","doi":"10.1039/d4ta06877g","DOIUrl":"https://doi.org/10.1039/d4ta06877g","url":null,"abstract":"High-quality perovskite films are crucial for achieving efficient carbon-based printable mesoscopic perovskite solar cells (MPSCs). However, rapid crystallization leads to poor film quality and the formation of defects, resulting in severe non-radiative recombination that hinders the improvement of device performance. In this work, an organic small molecule, dicyandiamide (DCDA), with multifunctional groups was incorporated into the perovskite precursor solution to concurrently regulate crystallization and manage defects in the perovskite in the mesoporous scaffold, and high performance MPSCs were obtained. Due to the robust interactions of the –C<img alt=\"[double bond, length as m-dash]\" border=\"0\" src=\"https://www.rsc.org/images/entities/char_e001.gif\"/>N and –CN groups in DCDA with un-coordinated Pb<small><sup>2+</sup></small>, and/or FA<small><sup>+</sup></small>/MA<small><sup>+</sup></small> <em>via</em> hydrogen bonding, coupled with the –NH<small><sub>2</sub></small> groups of DCDA forming hydrogen bonding or electrostatic interactions with halide anions to inhibit ion migration, the defects were passivated. The introduction of DCDA effectively retarded nucleation and grain growth, and significantly reduced the film formation rate. Thus, perovskite films with larger grain sizes, preferred orientation, and lower trap state density were obtained, thereby greatly suppressing non-radiative recombination. As a result, the average power conversion efficiency (PCE) of MPSCs treated with DCDA was improved from 17.15 ± 0.48% to 18.75 ± 0.42%, and a champion PCE of 19.12% was obtained. Meanwhile, the PCE of unpackaged MPSC devices still remained at 94.00% of the initial efficiency when stored in an air environment after 103 days, demonstrating excellent stability. The strategy facilitates a deeper understanding of perovskite crystallization in printable MPSCs.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"11 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Effective Strategy for Balancing Energy and Sensitivity: Design, Synthesis, and Properties of Chimeric Energetic Molecules 平衡能量和灵敏度的有效策略:嵌合高能分子的设计、合成与特性
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-21 DOI: 10.1039/d4ta06644h
Yujia Shan, Shi Huang, Tianyu Jiang, Ye Cao, Jinxin Wang, Yuteng Cao, Wenquan Zhang
{"title":"An Effective Strategy for Balancing Energy and Sensitivity: Design, Synthesis, and Properties of Chimeric Energetic Molecules","authors":"Yujia Shan, Shi Huang, Tianyu Jiang, Ye Cao, Jinxin Wang, Yuteng Cao, Wenquan Zhang","doi":"10.1039/d4ta06644h","DOIUrl":"https://doi.org/10.1039/d4ta06644h","url":null,"abstract":"Designing and synthesizing high-energy, low-sensitivity energetic molecules has become an urgent challenge in the field of energetic materials. Here, the concept of chimerism was introduced into the development of energetic molecules, proposing a systematic and effective research model for the design, screening, and synthesis of high-energy, low-sensitivity energetic molecules. We selected the classical insensitive energetic molecule nitroguanidine as the parent molecule and merged it with three other classic energetic molecules through a one-step substitution reaction, efficiently obtaining three classes of new energetic molecules. Analysis and characterization of their properties show that the chimeric molecules 3 and 6 inherit the advantages of the parent energetic molecules, demonstrating high-energy and insensitivity (detonation velocity of 8113 m s-1, impact sensitivity of 35 J for 3; detonation velocity of 8539 m s-1, impact sensitivity of &gt;60 J for 6). Remarkably, chimeric molecule 9 exhibits an acceptable sensitivity (7 J, similar to RDX) while surpassing the energy of the parent molecules significantly (&gt;9000 m/s). The energy of energetic molecule 8 (8742 m/s) is comparable to that of RDX (8754 m/s), and its mechanical sensitivity (50 J) is less sensitive than that of RDX (5.6 J). This study demonstrates the potential of the chimeric energetic molecule strategy for efficiently designing and synthesizing new high-performance energetic molecules in a simple manner.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"81 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition engineering of Cu2ZnGexSn1-xS4 nanoparticles hole transport layer for carbon electrode-based perovskite solar cells 用于碳电极型过氧化物太阳能电池的 Cu2ZnGexSn1-xS4 纳米粒子空穴传输层的成分工程设计
IF 11.9 2区 材料科学
Journal of Materials Chemistry A Pub Date : 2024-11-20 DOI: 10.1039/d4ta07106a
Nian Cheng, Weiwei Li, Zhen-Yu Xiao, Han Pan, Dingshan Zheng, Wenxing Yang
{"title":"Composition engineering of Cu2ZnGexSn1-xS4 nanoparticles hole transport layer for carbon electrode-based perovskite solar cells","authors":"Nian Cheng, Weiwei Li, Zhen-Yu Xiao, Han Pan, Dingshan Zheng, Wenxing Yang","doi":"10.1039/d4ta07106a","DOIUrl":"https://doi.org/10.1039/d4ta07106a","url":null,"abstract":"Cu2ZnSnS4 (CZTS) and Cu2ZnGeS4 (CZGS) nanoparticles are important inorganic hole transport layers (HTLs) for carbon electrode-based perovskite solar cells (C-PSCs), however the performances of the corresponding C-PSCs are still not satisfactory, which mainly originates from the un-optimized photo-electronic properties of the pristine CZTS and CZGS nanoparticles. Herein, composition engineering via alloying CZTS and CZGS is used to optimize the photo-electronic properties of the resulting CZGxT1-xS HTLs (x = 0, 0.25, 0.50, 0.75, and 1.0), which plays a pivotal role on the performances of the C-PSCs. On one hand, the optimum CZG0.5T0.5S HTL exhibits suitable conduction band energy barrier at the perovskite/CZG0.5T0.5S interface, thus, charge carrier recombination at the perovskite/CZG0.5T0.5S interface could be effectively suppressed. On the other hand, CZG0.5T0.5S HTL exhibit much larger conductivity, which could efficiently transport the holes from perovskite to carbon electrode. Therefore, C-PSCs with the CZG0.5T0.5S HTL could demonstrate a champion power conversion efficiency of 19.76%.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"42 1","pages":""},"PeriodicalIF":11.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信