Applied Numerical Mathematics最新文献

筛选
英文 中文
Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of convection-diffusion type 对流扩散型奇异扰动四阶问题的局部非连续伽勒金方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-07-08 DOI: 10.1016/j.apnum.2024.06.023
Yanhua Liu, Xuesong Wang, Yao Cheng
{"title":"Local discontinuous Galerkin method for a singularly perturbed fourth-order problem of convection-diffusion type","authors":"Yanhua Liu,&nbsp;Xuesong Wang,&nbsp;Yao Cheng","doi":"10.1016/j.apnum.2024.06.023","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.023","url":null,"abstract":"<div><p>We develop a local discontinuous Galerkin (LDG) method for a fourth-order singularly perturbed problem of convection-diffusion type. The existence and uniqueness of the computed solution are verified. Using the Shishkin mesh we derive an optimal-order energy-norm error estimate which is uniformly valid in the perturbation parameter. Numerical experiments are also given to support our theoretical findings.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 16-37"},"PeriodicalIF":2.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low rank approximation in the computation of first kind integral equations with TauToolbox 用 TauToolbox 计算第一类积分方程时的低级近似值
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-07-04 DOI: 10.1016/j.apnum.2024.06.022
Paulo B. Vasconcelos , Laurence Grammont , Nilson J. Lima
{"title":"Low rank approximation in the computation of first kind integral equations with TauToolbox","authors":"Paulo B. Vasconcelos ,&nbsp;Laurence Grammont ,&nbsp;Nilson J. Lima","doi":"10.1016/j.apnum.2024.06.022","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.022","url":null,"abstract":"<div><p><span>Tau Toolbox</span> is a mathematical library for the solution of integro-differential problems, based on the spectral Lanczos' Tau method. Over the past few years, a class within the library, called <span>polynomial</span>, has been developed for approximating functions by classical orthogonal polynomials and it is intended to be an easy-to-use yet efficient object-oriented framework.</p><p>In this work we discuss how this class has been designed to solve linear ill-posed problems and we provide a description of the available methods, Tikhonov regularization and truncated singular value expansion. For the solution of the Fredholm integral equation of the first kind, which is built from a low-rank approximation of the kernel followed by a numerical truncated singular value expansion, an error estimate is given.</p><p>Numerical experiments illustrate that this approach is capable of efficiently compute good approximations of linear discrete ill-posed problems, even facing perturbed available data function, with no programming effort. Several test problems are used to evaluate the performance and reliability of the solvers.</p><p>The final product of this paper is the numerical solution of a first-kind integral equation, which is constructed using only two inputs from the user: the kernel and the right-hand side.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 1-15"},"PeriodicalIF":2.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001703/pdfft?md5=49b2fb7a69e48f47a313e9bf4b9ddaa9&pid=1-s2.0-S0168927424001703-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energetic spectral-element time marching methods for phase-field nonlinear gradient systems 相场非线性梯度系统的能量谱元时间行进方法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-27 DOI: 10.1016/j.apnum.2024.06.021
Shiqin Liu , Haijun Yu
{"title":"Energetic spectral-element time marching methods for phase-field nonlinear gradient systems","authors":"Shiqin Liu ,&nbsp;Haijun Yu","doi":"10.1016/j.apnum.2024.06.021","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.021","url":null,"abstract":"<div><p>We propose two efficient energetic spectral-element methods in time for marching nonlinear gradient systems with the phase-field Allen–Cahn equation as an example: one fully implicit nonlinear method and one semi-implicit linear method. Different from other spectral methods in time using spectral Petrov-Galerkin or weighted Galerkin approximations, the presented implicit method employs an energetic variational Galerkin form that can maintain the mass conservation and energy dissipation property of the continuous dynamical system. Another advantage of this method is its superconvergence. A high-order extrapolation is adopted for the nonlinear term to get the semi-implicit method. The semi-implicit method does not have superconvergence, but can be improved by a few Picard-like iterations to recover the superconvergence of the implicit method. Numerical experiments verify that the method using Legendre elements of degree three outperforms the 4th-order implicit-explicit backward differentiation formula and the 4th-order exponential time difference Runge-Kutta method, which were known to have best performances in solving phase-field equations. In addition to the standard Allen–Cahn equation, we also apply the method to a conservative Allen–Cahn equation, in which the conservation of discrete total mass is verified. The applications of the proposed methods are not limited to phase-field Allen–Cahn equations. They are suitable for solving general, large-scale nonlinear dynamical systems.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 38-59"},"PeriodicalIF":2.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems 具有自适应策略的高效混合共轭梯度法及其在图像复原问题中的应用
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-26 DOI: 10.1016/j.apnum.2024.06.020
Zibo Chen , Hu Shao , Pengjie Liu , Guoxin Li , Xianglin Rong
{"title":"An efficient hybrid conjugate gradient method with an adaptive strategy and applications in image restoration problems","authors":"Zibo Chen ,&nbsp;Hu Shao ,&nbsp;Pengjie Liu ,&nbsp;Guoxin Li ,&nbsp;Xianglin Rong","doi":"10.1016/j.apnum.2024.06.020","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.020","url":null,"abstract":"<div><p>In this study, we introduce a novel hybrid conjugate gradient method with an adaptive strategy called asHCG method. The asHCG method exhibits the following characteristics. (i) Its search direction guarantees sufficient descent property without dependence on any line search. (ii) It possesses strong convergence for the uniformly convex function using a weak Wolfe line search, and under the same line search, it achieves global convergence for the general function. (iii) Employing the Armijo line search, it provides an approximate guarantee for worst-case complexity for the uniformly convex function. The numerical results demonstrate promising and encouraging performances in both unconstrained optimization problems and image restoration problems.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 362-379"},"PeriodicalIF":2.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimized algorithm for numerical solution of coupled Burgers equations 耦合布尔格斯方程数值解的优化算法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-26 DOI: 10.1016/j.apnum.2024.06.019
Anurag Kaur , V. Kanwar , Higinio Ramos
{"title":"An optimized algorithm for numerical solution of coupled Burgers equations","authors":"Anurag Kaur ,&nbsp;V. Kanwar ,&nbsp;Higinio Ramos","doi":"10.1016/j.apnum.2024.06.019","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.019","url":null,"abstract":"<div><p>Investigation of the solutions of the coupled viscous Burgers system is crucial for realizing and understanding some physical phenomena in applied sciences. Particularly, Burgers equations are used in the modeling of fluid mechanics and nonlinear acoustics. In the present study, a modified meshless quadrature method based on radial basis functions is used to discretize the partial derivatives in the spatial variable. A technique to find the best value of the shape parameter is introduced. A high-resolution optimized hybrid block method is then used to solve the problem in the temporal variable. To validate the proposed method, several test problems are considered and the simulated results are compared with exact solutions and previous works. Moreover, a sensitivity analysis for parameter <em>c</em> is conducted, and the unconditional stability of the proposed algorithm has been validated.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 352-361"},"PeriodicalIF":2.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stability of θ-methods for DDEs and PDDEs 论 DDE 和 PDDE θ 方法的稳定性
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-25 DOI: 10.1016/j.apnum.2024.06.018
Alejandro Rodríguez-Fernández , Jesús Martín-Vaquero
{"title":"On the stability of θ-methods for DDEs and PDDEs","authors":"Alejandro Rodríguez-Fernández ,&nbsp;Jesús Martín-Vaquero","doi":"10.1016/j.apnum.2024.06.018","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.018","url":null,"abstract":"<div><p>In this paper, the stability of <em>θ</em>-methods for delay differential equations is studied based on the test equation <span><math><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><mi>B</mi><mi>y</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></math></span>, where <em>τ</em> is a constant delay and <em>A</em> is a positive definite matrix. It is mainly considered the case where the matrices <em>A</em> and <em>B</em> are not simultaneosly diagonalizable and the concept of field of values is used to prove a sufficient condition for unconditional stability of these methods and another condition which also guarantees their stability, but according to the step size. The results obtained are also simplified for the case where the matrices <em>A</em> and <em>B</em> are simultaneously diagonalizable and compared with other similar works for the general case. Several numerical examples in which the theory discussed here is applied to parabolic problems given by partial delay differential equations with a diffusion term and a delayed term are presented, too.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 312-328"},"PeriodicalIF":2.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sine and cosine diffusive representations for the Caputo fractional derivative 卡普托分数导数的正弦和余弦扩散表示法
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-21 DOI: 10.1016/j.apnum.2024.06.017
Hassan Khosravian-Arab , Mehdi Dehghan
{"title":"The sine and cosine diffusive representations for the Caputo fractional derivative","authors":"Hassan Khosravian-Arab ,&nbsp;Mehdi Dehghan","doi":"10.1016/j.apnum.2024.06.017","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.017","url":null,"abstract":"<div><p>In recent years, various types of methods have been proposed to approximate the Caputo fractional derivative numerically. A common challenge of the methods is the non-local property of the Caputo fractional derivative which leads to the slow and memory consuming methods. Diffusive representation of fractional derivative is an efficient tool to overcome the mentioned challenge. This paper presents two new diffusive representations to approximate the Caputo fractional derivative of order <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span>. An error analysis of the newly presented methods together with some numerical examples is provided at the end.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 265-290"},"PeriodicalIF":2.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model 非线性年龄结构反应扩散海洛因传播模型的数值阈值稳定性
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-19 DOI: 10.1016/j.apnum.2024.06.016
X. Liu , M. Zhang , Z.W. Yang
{"title":"Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model","authors":"X. Liu ,&nbsp;M. Zhang ,&nbsp;Z.W. Yang","doi":"10.1016/j.apnum.2024.06.016","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.016","url":null,"abstract":"<div><p>This paper deals with the numerical threshold stability of a nonlinear age-space structured heroin transmission model. A semi-discrete system is established by spatially domain discretization of the original nonlinear age-space structured model. A threshold value is proposed in stability analysis of the semi-discrete system and named as a numerical basic reproduction number. Besides the role it plays in numerical threshold stability analysis, the numerical basic reproduction number can preserve qualitative properties of the exact basic reproduction number and converge to the latter while stepsizes vanish. A fully discrete system is established via a time discretization of the semi-discrete system, in which an implicit-explicit technique is implemented to ensure the preservation of the biological meanings (such as positivity) without CFL restriction. Some numerical experiments are exhibited in the end to confirm the conclusions and explore the final state.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 291-311"},"PeriodicalIF":2.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations 基于分数阶拉格朗日多项式运算矩阵的高效配位技术,用于求解时空分数阶偏微分方程
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-19 DOI: 10.1016/j.apnum.2024.06.014
Saurabh Kumar , Vikas Gupta , Dia Zeidan
{"title":"An efficient collocation technique based on operational matrix of fractional-order Lagrange polynomials for solving the space-time fractional-order partial differential equations","authors":"Saurabh Kumar ,&nbsp;Vikas Gupta ,&nbsp;Dia Zeidan","doi":"10.1016/j.apnum.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.014","url":null,"abstract":"<div><p>In this research, we propose a novel and fast computational technique for solving a class of space-time fractional-order linear and non-linear partial differential equations. Caputo-type fractional derivatives are considered. The proposed method is based on the operational and pseudo-operational matrices for the fractional-order Lagrange polynomials. To carry out the method, first, we find the integer and fractional-order operational and pseudo-operational matrix of integration. The collocation technique and obtained operational and pseudo-operational matrices are then used to generate a system of algebraic equations by reducing the given space-time fractional differential problem. The resultant algebraic system is then easily solved by Newton's iterative methods. The upper bound of the fractional-order operational matrix of integration is also provided, which confirms the convergence of fractional-order Lagrange polynomial's approximation. Finally, some numerical experiments are conducted to demonstrate the applicability and usefulness of the suggested numerical scheme.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 249-264"},"PeriodicalIF":2.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new class of quadrature rules for estimating the error in Gauss quadrature 用于估计高斯正交误差的一类新正交规则
IF 2.2 2区 数学
Applied Numerical Mathematics Pub Date : 2024-06-18 DOI: 10.1016/j.apnum.2024.06.011
Aleksandar V. Pejčev , Lothar Reichel , Miodrag M. Spalević , Stefan M. Spalević
{"title":"A new class of quadrature rules for estimating the error in Gauss quadrature","authors":"Aleksandar V. Pejčev ,&nbsp;Lothar Reichel ,&nbsp;Miodrag M. Spalević ,&nbsp;Stefan M. Spalević","doi":"10.1016/j.apnum.2024.06.011","DOIUrl":"https://doi.org/10.1016/j.apnum.2024.06.011","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The need to evaluate Gauss quadrature rules arises in many applications in science and engineering. It often is important to be able to estimate the quadrature error when applying an &lt;em&gt;ℓ&lt;/em&gt;-point Gauss rule, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;em&gt;f&lt;/em&gt; is an integrand of interest. Such an estimate often is furnished by applying another quadrature rule, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; nodes, and using the difference &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; or its magnitude as an estimate for the quadrature error in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; or its magnitude. The classical approach to estimate the error in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is to let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, be the Gauss-Kronrod quadrature rule associated with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. However, it is well known that the Gauss-Kronrod rule associated with a Gauss rule &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; might not exist for certain measures that determine the Gauss rule and for certain numbers of nodes. This prompted M. M. Spalević &lt;span&gt;[1]&lt;/span&gt; to develop generalized averaged Gauss rules, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; nodes for estimating the error in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Similarly as for &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;-node Gauss-Kronrod rules, &lt;em&gt;ℓ&lt;/em&gt; nodes of the rule &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; agree with the nodes of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. However, generalized averaged Gauss rules are not internal for some measures. They therefore may not be applicable when the integrand only is define","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 206-221"},"PeriodicalIF":2.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141434087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信